These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29730804)

  • 1. Model-based analysis of fatigued human knee extensors : Effects of isometrically induced fatigue on Hill-type model parameters and ballistic contractions.
    Penasso H; Thaller S
    Eur J Appl Physiol; 2018 Jul; 118(7):1447-1461. PubMed ID: 29730804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.
    Arora S; Budden S; Byrne JM; Behm DG
    Eur J Appl Physiol; 2015 Oct; 115(10):2177-87. PubMed ID: 26047643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors.
    Halperin I; Copithorne D; Behm DG
    Appl Physiol Nutr Metab; 2014 Dec; 39(12):1338-44. PubMed ID: 25291403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of low-frequency fatigue on the torque-velocity relationship in human quadriceps.
    Herskind J; Gravholt A; Hvid LG; Overgaard K
    J Appl Physiol (1985); 2023 Dec; 135(6):1457-1466. PubMed ID: 37916271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise.
    Temesi J; Mattioni Maturana F; Peyrard A; Piucco T; Murias JM; Millet GY
    Eur J Appl Physiol; 2017 May; 117(5):969-978. PubMed ID: 28357580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-induced changes in knee-extensor torque complexity and muscle metabolic rate are dependent on joint angle.
    Pethick J; Winter SL; Burnley M
    Eur J Appl Physiol; 2021 Nov; 121(11):3117-3131. PubMed ID: 34355267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical changes at the knee after lower limb fatigue in healthy young women.
    Longpré HS; Potvin JR; Maly MR
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):441-7. PubMed ID: 23528628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups.
    Neyroud D; Rüttimann J; Mannion AF; Millet GY; Maffiuletti NA; Kayser B; Place N
    J Appl Physiol (1985); 2013 May; 114(10):1426-34. PubMed ID: 23471948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in fatigability of dynamic contractions.
    Hunter SK
    Exp Physiol; 2016 Feb; 101(2):250-5. PubMed ID: 26440505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Active Muscle Stiffness after Intermittent Submaximal Isometric Contractions.
    Morel B; Hug F; Nordez A; Pournot H; Besson T; Mathevon L; Lapole T
    Med Sci Sports Exerc; 2019 Dec; 51(12):2603-2609. PubMed ID: 31269006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee extensor fatigue resistance of young and older men and women performing sustained and brief intermittent isometric contractions.
    Mcphee JS; Maden-Wilkinson TM; Narici MV; Jones DA; Degens H
    Muscle Nerve; 2014 Sep; 50(3):393-400. PubMed ID: 24408784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-velocity relationship during isometric and isotonic fatiguing contractions.
    Devrome AN; MacIntosh BR
    J Appl Physiol (1985); 2018 Sep; 125(3):706-714. PubMed ID: 29856265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Nonstationarity on Muscle Force Signals Regularity During a Fatiguing Motor Task.
    Chatain C; Gruet M; Vallier JM; Ramdani S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):228-237. PubMed ID: 31765316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nitrate supplementation on muscle contraction in healthy adults.
    Hoon MW; Fornusek C; Chapman PG; Johnson NA
    Eur J Sport Sci; 2015; 15(8):712-9. PubMed ID: 26681629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of antagonist muscle fatigue on knee extension torque.
    Beltman JG; Sargeant AJ; Ball D; Maganaris CN; de Haan A
    Pflugers Arch; 2003 Sep; 446(6):735-41. PubMed ID: 12851821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles.
    Kristensen AM; Nielsen OB; Pedersen TH; Overgaard K
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31292165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of nonlocal muscle fatigue in male youth.
    Ben Othman A; Chaouachi A; Hammami R; Chaouachi MM; Kasmi S; Behm DG
    Appl Physiol Nutr Metab; 2017 Mar; 42(3):229-237. PubMed ID: 28177751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions.
    Karlsson JS; Ostlund N; Larsson B; Gerdle B
    J Electromyogr Kinesiol; 2003 Oct; 13(5):461-8. PubMed ID: 12932420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions.
    Pethick J; Winter SL; Burnley M
    Eur J Sport Sci; 2019 Nov; 19(10):1349-1358. PubMed ID: 30955469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.