These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 29730829)
21. [Methanotrophic bacteria of acid sphagnum bogs]. Dedysh SN Mikrobiologiia; 2002; 71(6):741-54. PubMed ID: 12526194 [TBL] [Abstract][Full Text] [Related]
22. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Ma XY; Xu H; Cao ZY; Shu L; Zhu RL Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846 [TBL] [Abstract][Full Text] [Related]
23. Response of C and N cycles to N fertilization in Sphagnum and Molinia-dominated peat mesocosms. Leroy F; Gogo S; Guimbaud C; Francez AJ; Zocatelli R; Défarge C; Bernard-Jannin L; Hu Z; Laggoun-Défarge F J Environ Sci (China); 2019 Mar; 77():264-272. PubMed ID: 30573090 [TBL] [Abstract][Full Text] [Related]
24. Influence of temperature on the δ van Winden JF; Talbot HM; Reichart GJ; McNamara NP; Benthien A; Sinninghe Damsté JS Geobiology; 2020 Jul; 18(4):497-507. PubMed ID: 32180328 [TBL] [Abstract][Full Text] [Related]
25. The Sphagnum microbiome: new insights from an ancient plant lineage. Kostka JE; Weston DJ; Glass JB; Lilleskov EA; Shaw AJ; Turetsky MR New Phytol; 2016 Jul; 211(1):57-64. PubMed ID: 27173909 [TBL] [Abstract][Full Text] [Related]
26. Moss species and precipitation mediate experimental warming stimulation of growing season N Lett S; Christiansen CT; Dorrepaal E; Michelsen A Glob Chang Biol; 2024 Jul; 30(7):e17401. PubMed ID: 39041207 [TBL] [Abstract][Full Text] [Related]
27. Microbial Community Structure and Methane Cycling Potential along a Thermokarst Pond-Peatland Continuum. Vigneron A; Cruaud P; Bhiry N; Lovejoy C; Vincent WF Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31652931 [TBL] [Abstract][Full Text] [Related]
28. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. Pérez R; Casal J; Muñoz R; Lebrero R Sci Total Environ; 2019 Oct; 688():684-690. PubMed ID: 31254834 [TBL] [Abstract][Full Text] [Related]
29. Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Tveit AT; Kiss A; Winkel M; Horn F; Hájek T; Svenning MM; Wagner D; Liebner S Sci Rep; 2020 Dec; 10(1):22412. PubMed ID: 33376244 [TBL] [Abstract][Full Text] [Related]
30. Recovery of Smelter-Impacted Peat and Sphagnum Moss: a Microbial Perspective. Seward J; Bräuer S; Beckett P; Roy-Léveillée P; Emilson E; Watmough S; Basiliko N Microb Ecol; 2023 Nov; 86(4):2894-2903. PubMed ID: 37632540 [TBL] [Abstract][Full Text] [Related]
31. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Soudzilovskaia NA; Cornelissen JH; During HJ; van Logtestijn RS; Lang SI; Aerts R Ecology; 2010 Sep; 91(9):2716-26. PubMed ID: 20957965 [TBL] [Abstract][Full Text] [Related]
32. Structural Variations of Bacterial Community Driven by Tian W; Wang H; Xiang X; Wang R; Xu Y Front Microbiol; 2019; 10():1661. PubMed ID: 31396183 [No Abstract] [Full Text] [Related]
33. Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated Microbiomes. Cao W; Cai Y; Bao Z; Wang S; Yan X; Jia Z Front Microbiol; 2022; 13():885087. PubMed ID: 35663885 [TBL] [Abstract][Full Text] [Related]
34. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in sphagnum mosses. Putkinen A; Larmola T; Tuomivirta T; Siljanen HM; Bodrossy L; Tuittila ES; Fritze H Front Microbiol; 2012; 3():15. PubMed ID: 22291695 [TBL] [Abstract][Full Text] [Related]
35. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Esson KC; Lin X; Kumaresan D; Chanton JP; Murrell JC; Kostka JE Appl Environ Microbiol; 2016 Apr; 82(8):2363-2371. PubMed ID: 26873322 [TBL] [Abstract][Full Text] [Related]
36. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Gupta V; Smemo KA; Yavitt JB; Basiliko N Microb Ecol; 2012 Feb; 63(2):438-45. PubMed ID: 21728037 [TBL] [Abstract][Full Text] [Related]
37. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. Jean M; Holland-Moritz H; Melvin AM; Johnstone JF; Mack MC New Phytol; 2020 Sep; 227(5):1335-1349. PubMed ID: 32299141 [TBL] [Abstract][Full Text] [Related]
38. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. Putkinen A; Larmola T; Tuomivirta T; Siljanen HM; Bodrossy L; Tuittila ES; Fritze H FEMS Microbiol Ecol; 2014 Jun; 88(3):596-611. PubMed ID: 24701995 [TBL] [Abstract][Full Text] [Related]
39. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Chen Y; Dumont MG; McNamara NP; Chamberlain PM; Bodrossy L; Stralis-Pavese N; Murrell JC Environ Microbiol; 2008 Feb; 10(2):446-59. PubMed ID: 18093158 [TBL] [Abstract][Full Text] [Related]
40. Methanotroph populations and CH4 oxidation potentials in high-Arctic peat are altered by herbivory induced vegetation change. Rainer EM; Seppey CVW; Tveit AT; Svenning MM FEMS Microbiol Ecol; 2020 Oct; 96(10):. PubMed ID: 32639555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]