BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29731301)

  • 1. A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis.
    Corrionero A; Horvitz HR
    Curr Biol; 2018 May; 28(10):1522-1535.e5. PubMed ID: 29731301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis.
    Root J; Merino P; Nuckols A; Johnson M; Kukar T
    Neurobiol Dis; 2021 Jul; 154():105360. PubMed ID: 33812000
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Shao Q; Yang M; Liang C; Ma L; Zhang W; Jiang Z; Luo J; Lee JK; Liang C; Chen JF
    Autophagy; 2020 Sep; 16(9):1635-1650. PubMed ID: 31847700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD.
    Pang W; Hu F
    J Neurochem; 2021 May; 157(3):334-350. PubMed ID: 33259633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis.
    Lan Y; Sullivan PM; Hu F
    Autophagy; 2019 May; 15(5):871-885. PubMed ID: 30696333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism.
    Liu Y; Wang J
    Autophagy; 2019 May; 15(5):913-914. PubMed ID: 30767689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy.
    Yang M; Liang C; Swaminathan K; Herrlinger S; Lai F; Shiekhattar R; Chen JF
    Sci Adv; 2016 Sep; 2(9):e1601167. PubMed ID: 27617292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS.
    Gitler AD; Tsuiji H
    Brain Res; 2016 Sep; 1647():19-29. PubMed ID: 27059391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversing lysosome-ribosome circuit dysregulation mitigates C9FTD/ALS neurodegeneration and behaviors.
    Ma L; Liang C; Wang J; Chang Q; Wang Y; Zhang W; Du Y; Sadan J; Chen JF
    Hum Mol Genet; 2023 Apr; 32(8):1252-1265. PubMed ID: 36322143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD.
    Su MY; Fromm SA; Zoncu R; Hurley JH
    Nature; 2020 Sep; 585(7824):251-255. PubMed ID: 32848248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72.
    Ji YJ; Ugolino J; Brady NR; Hamacher-Brady A; Wang J
    Autophagy; 2017 Jul; 13(7):1254-1255. PubMed ID: 28319438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanisms of Neurodegeneration Related to
    Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G
    Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The First Historically Reported Italian Family with FTD/ALS Teaches a Lesson on C9orf72 RE: Clinical Heterogeneity and Oligogenic Inheritance.
    Giannoccaro MP; Bartoletti-Stella A; Piras S; Casalena A; Oppi F; Ambrosetto G; Montagna P; Liguori R; Parchi P; Capellari S
    J Alzheimers Dis; 2018; 62(2):687-697. PubMed ID: 29480190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.
    Kartanou C; Karadima G; Koutsis G; Breza M; Papageorgiou SG; Paraskevas GP; Kapaki E; Panas M
    Amyotroph Lateral Scler Frontotemporal Degener; 2018 Feb; 19(1-2):152-154. PubMed ID: 29166782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The frequency of the C9orf72 expansion in a Brazilian population.
    Cintra VP; Bonadia LC; Andrade HMT; de Albuquerque M; Eusébio MF; de Oliveira DS; Claudino R; Gonçalves MVM; Teixeira AL; de Godoy Rousseff Prado L; de Souza LC; Dourado MET; Oliveira ASB; Tumas V; França MC; Marques W
    Neurobiol Aging; 2018 Jun; 66():179.e1-179.e4. PubMed ID: 29449030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
    Wen X; Westergard T; Pasinelli P; Trotti D
    Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS.
    Kumar V; Kashav T; Islam A; Ahmad F; Hassan MI
    Neurochem Int; 2016 Nov; 100():11-20. PubMed ID: 27539655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in the prevalence of genetic mutations in FTD and ALS: A meta-analysis.
    Curtis AF; Masellis M; Hsiung GR; Moineddin R; Zhang K; Au B; Millett G; Mackenzie I; Rogaeva E; Tierney MC
    Neurology; 2017 Oct; 89(15):1633-1642. PubMed ID: 28916533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD.
    Starr A; Sattler R
    Brain Res; 2018 Aug; 1693(Pt A):98-108. PubMed ID: 29453960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.