BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29731306)

  • 1. Absence of Complex I Implicates Rearrangement of the Respiratory Chain in European Mistletoe.
    Senkler J; Rugen N; Eubel H; Hegermann J; Braun HP
    Curr Biol; 2018 May; 28(10):1606-1613.e4. PubMed ID: 29731306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe.
    Maclean AE; Hertle AP; Ligas J; Bock R; Balk J; Meyer EH
    Curr Biol; 2018 May; 28(10):1614-1619.e3. PubMed ID: 29731304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size.
    Skippington E; Barkman TJ; Rice DW; Palmer JD
    BMC Plant Biol; 2017 Feb; 17(1):49. PubMed ID: 28222679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gene space of European mistletoe (Viscum album).
    Schröder L; Hohnjec N; Senkler M; Senkler J; Küster H; Braun HP
    Plant J; 2022 Jan; 109(1):278-294. PubMed ID: 34713513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes from oxidative phosphorylation complexes II-V and two dual-function subunits of complex I are transcribed in Viscum album despite absence of the entire mitochondrial holo-complex I.
    Petersen G; Shyama Prasad Rao R; Anderson B; Zervas A; Seberg O; Rasmusson AG; Max Møller I
    Mitochondrion; 2022 Jan; 62():1-12. PubMed ID: 34740863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photosynthesis apparatus of European mistletoe (Viscum album).
    Schröder L; Hegermann J; Pille P; Braun HP
    Plant Physiol; 2022 Oct; 190(3):1896-1914. PubMed ID: 35976139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria.
    Petersen G; Cuenca A; Møller IM; Seberg O
    Sci Rep; 2015 Dec; 5():17588. PubMed ID: 26625950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular structure of the OXPHOS system in highly thermogenic tissue of Arum maculatum.
    Sunderhaus S; Klodmann J; Lenz C; Braun HP
    Plant Physiol Biochem; 2010 Apr; 48(4):265-72. PubMed ID: 20144873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations.
    Kovářová N; Cížková Vrbacká A; Pecina P; Stránecký V; Pronicka E; Kmoch S; Houštěk J
    Biochim Biophys Acta; 2012 Jul; 1822(7):1114-24. PubMed ID: 22465034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding mitochondrial complex I assembly in health and disease.
    Mimaki M; Wang X; McKenzie M; Thorburn DR; Ryan MT
    Biochim Biophys Acta; 2012 Jun; 1817(6):851-62. PubMed ID: 21924235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.
    Beutner G; Eliseev RA; Porter GA
    PLoS One; 2014; 9(11):e113330. PubMed ID: 25427064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Does European Mistletoe Survive Without Complex I?
    da Fonseca-Pereira P; Silva WB; Araújo WL; Nunes-Nesi A
    Trends Plant Sci; 2018 Oct; 23(10):847-850. PubMed ID: 30097375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiration: Life Without Complex I.
    Busch KB
    Curr Biol; 2018 May; 28(10):R616-R618. PubMed ID: 29787729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina.
    Krause F; Scheckhuber CQ; Werner A; Rexroth S; Reifschneider NH; Dencher NA; Osiewacz HD
    Ann N Y Acad Sci; 2006 May; 1067():106-15. PubMed ID: 16803975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III.
    Dudkina NV; Eubel H; Keegstra W; Boekema EJ; Braun HP
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3225-9. PubMed ID: 15713802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage.
    Manczak M; Park BS; Jung Y; Reddy PH
    Neuromolecular Med; 2004; 5(2):147-62. PubMed ID: 15075441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Oxidative Phosphorylation system of the mitochondria in plants.
    Braun HP
    Mitochondrion; 2020 Jul; 53():66-75. PubMed ID: 32334143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.