These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29731489)
1. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria. Kook MS; Roh HS; Kim BH Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489 [TBL] [Abstract][Full Text] [Related]
2. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
3. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration. Shim JH; Jeong JH; Won JY; Bae JH; Ahn G; Jeon H; Yun WS; Bae EB; Choi JW; Lee SH; Jeong CM; Chung HY; Huh JB Biomed Mater; 2017 Dec; 13(1):015014. PubMed ID: 29155411 [TBL] [Abstract][Full Text] [Related]
5. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Alagoz AS; Rodriguez-Cabello JC; Hasirci V Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870 [TBL] [Abstract][Full Text] [Related]
6. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
7. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect. Kim JH; Linh NT; Min YK; Lee BT J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. Yeo A; Wong WJ; Khoo HH; Teoh SH J Biomed Mater Res A; 2010 Jan; 92(1):311-21. PubMed ID: 19189386 [TBL] [Abstract][Full Text] [Related]
11. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Kim Y; Kim G Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326 [TBL] [Abstract][Full Text] [Related]
12. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Liu Y; Wang R; Chen S; Xu Z; Wang Q; Yuan P; Zhou Y; Zhang Y; Chen J Int J Biol Macromol; 2020 Apr; 148():153-162. PubMed ID: 31935409 [TBL] [Abstract][Full Text] [Related]
13. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338 [TBL] [Abstract][Full Text] [Related]
14. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
16. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857 [TBL] [Abstract][Full Text] [Related]
18. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Song J; Zhu G; Wang L; An G; Shi X; Wang Y Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360 [TBL] [Abstract][Full Text] [Related]
19. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F; Mirzadeh H J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014 [TBL] [Abstract][Full Text] [Related]
20. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Lee CM; Yang SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]