These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29732115)

  • 1. A DNA-conjugated small molecule catalyst enzyme mimic for site-selective ester hydrolysis.
    Flanagan ML; Arguello AE; Colman DE; Kim J; Krejci JN; Liu S; Yao Y; Zhang Y; Gorin DJ
    Chem Sci; 2018 Feb; 9(8):2105-2112. PubMed ID: 29732115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pursuing DNA catalysts for protein modification.
    Silverman SK
    Acc Chem Res; 2015 May; 48(5):1369-79. PubMed ID: 25939889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective ester hydrolysis catalyzed by imprinted polymers.
    Sellergren B; Karmalkar RN; Shea KJ
    J Org Chem; 2000 Jun; 65(13):4009-27. PubMed ID: 10866620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A "tag-and-modify" approach to site-selective protein modification.
    Chalker JM; Bernardes GJ; Davis BG
    Acc Chem Res; 2011 Sep; 44(9):730-41. PubMed ID: 21563755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules.
    Sun X; Lee H; Lee S; Tan KL
    Nat Chem; 2013 Sep; 5(9):790-5. PubMed ID: 23965682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Synthesis, and Application of Chiral Bicyclic Imidazole Catalysts.
    Wang M; Zhang Z; Zhang W
    Acc Chem Res; 2022 Sep; 55(18):2708-2727. PubMed ID: 36043467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Hydrolysis of Aryl Esters under Acidic and Neutral Conditions by a Synthetic Aspartic Protease Mimic.
    Bose I; Zhao Y
    ACS Catal; 2021 Apr; 11(7):3938-3942. PubMed ID: 34422449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol.
    Simmons EM; Hartwig JF
    Nature; 2012 Feb; 483(7387):70-3. PubMed ID: 22382981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical insights into the functioning of metallopeptidases and their synthetic analogues.
    Zhang T; Ozbil M; Barman A; Paul TJ; Bora RP; Prabhakar R
    Acc Chem Res; 2015 Feb; 48(2):192-200. PubMed ID: 25607542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transesterification of Non-Activated Esters Promoted by Small Molecules Mimicking the Active Site of Hydrolases.
    Garrido-González JJ; Sánchez-Santos E; Habib A; Cuevas Ferreras ÁV; Sanz F; Morán JR; Fuentes de Arriba ÁL
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202206072. PubMed ID: 35580193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.
    Haas MJ; Kramer JK; McNeill G; Scott K; Foglia TA; Sehat N; Fritsche J; Mossoba MM; Yurawecz MP
    Lipids; 1999 Sep; 34(9):979-87. PubMed ID: 10574663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Catalysis Intervening to Histone Epigenetics.
    Nozaki T; Kanai M
    Acc Chem Res; 2021 May; 54(9):2313-2322. PubMed ID: 33847478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic efficiency of designed catalytic proteins.
    Korendovych IV; DeGrado WF
    Curr Opin Struct Biol; 2014 Aug; 27():113-21. PubMed ID: 25048695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular general base catalyzed ester hydrolysis. The hydrolysis of 2-aminobenzoate esters.
    Fife TH; Singh R; Bembi R
    J Org Chem; 2002 May; 67(10):3179-83. PubMed ID: 12003523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C-H Functionalization Reactions.
    Cammarota RC; Liu W; Bacsa J; Davies HML; Sigman MS
    J Am Chem Soc; 2022 Feb; 144(4):1881-1898. PubMed ID: 35073072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular peptide nanotubes as artificial enzymes for catalysing ester hydrolysis.
    Song Q; Cheng Z; Perrier S
    Polym Chem; 2023 Oct; 14(41):4712-4718. PubMed ID: 38013987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.