These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29732535)

  • 1. An Analytical Method for Assessing Recharge Using Groundwater Travel Time in Dupuit-Forchheimer Aquifers.
    Chesnaux R; Santoni S; Garel E; Huneau F
    Ground Water; 2018 Nov; 56(6):986-992. PubMed ID: 29732535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.
    Zlotnik VA; Kacimov A; Al-Maktoumi A
    Ground Water; 2017 Nov; 55(6):797-810. PubMed ID: 28464226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of recharge and pollutant fluxes to urban groundwaters.
    Thomas A; Tellam J
    Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new package in MODFLOW to simulate unconfined groundwater flow in sloping aquifers.
    Wang Q; Zhan H; Tang Z
    Ground Water; 2014; 52(6):924-35. PubMed ID: 24299562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers.
    Masciopinto C
    J Environ Manage; 2013 Nov; 130():306-12. PubMed ID: 24103702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Facet analysis of analytical and numerical models to resolve sustainable artificial recharge rates in unconfined aquifers.
    Kumar R; Tewari A; Mishra S; Singh PK; Gaur S
    J Environ Manage; 2024 Jun; 362():121233. PubMed ID: 38833922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur Hexafluoride and Potassium Bromide as Groundwater Tracers for Managed Aquifer Recharge.
    Gerenday SP; Clark JF; Hansen J; Fischer I; Koreny J
    Ground Water; 2020 Sep; 58(5):777-787. PubMed ID: 32020587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrological components of groundwater recharge in leaky aquifers adjacent to semipervious streambank: analytical study.
    Mahdavi A
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):24833-24848. PubMed ID: 34826081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer.
    Guardiola-Albert C; Martos-Rosillo S; Pardo-Igúzquiza E; Durán Valsero JJ; Pedrera A; Jiménez-Gavilán P; Liñán Baena C
    Ground Water; 2015; 53(6):885-95. PubMed ID: 25510674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G
    Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of modeled recharge distribution on simulated groundwater availability and capture.
    Tillman FD; Pool DR; Leake SA
    Ground Water; 2015; 53(3):378-88. PubMed ID: 24841767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical solution for ground water transit time through unconfined aquifers.
    Chesnaux R; Molson JW; Chapuis RP
    Ground Water; 2005; 43(4):511-7. PubMed ID: 16029177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate solutions for radial travel time and capture zone in unconfined aquifers.
    Zhou Y; Haitjema H
    Ground Water; 2012; 50(5):799-803. PubMed ID: 22070404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Travel time and trajectory moments of conservative solutes in two-dimensional convergent flows.
    Riva M; Sánchez-Vila X; Guadagnini A; De Simoni M; Willmann M
    J Contam Hydrol; 2006 Jan; 82(1-2):23-43. PubMed ID: 16216383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia.
    Yenehun A; Nigate F; Belay AS; Desta MT; Van Camp M; Walraevens K
    Sci Total Environ; 2020 Dec; 748():142243. PubMed ID: 33113708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of recharge rates on steady-state plume lengths.
    Birla S; Yadav PK; Mahalawat P; Händel F; Chahar BR; Liedl R
    J Contam Hydrol; 2020 Nov; 235():103709. PubMed ID: 32916587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of Regional Water Table Patterns for Estimating Recharge Rates in Shallow Aquifers.
    Gilmore TE; Zlotnik V; Johnson M
    Ground Water; 2019 May; 57(3):443-454. PubMed ID: 29984821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble gas excess air applied to distinguish groundwater recharge conditions.
    Ingram RG; Hiscock KM; Dennis PF
    Environ Sci Technol; 2007 Mar; 41(6):1949-55. PubMed ID: 17410789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration.
    Knowling MJ; Werner AD
    Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaky Aquifer Models to Simulate the Well Flow in Fractured Aquifers with Linear Interporosity Flow.
    Székely F; Szűcs P; Zákányi B
    Ground Water; 2019 Sep; 57(5):687-692. PubMed ID: 30614520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.