BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29732553)

  • 1. N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.
    Yaple Z; Arsalidou M
    Child Dev; 2018 Nov; 89(6):2010-2022. PubMed ID: 29732553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan.
    Yaple ZA; Stevens WD; Arsalidou M
    Neuroimage; 2019 Aug; 196():16-31. PubMed ID: 30954708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI and MEG in the study of typical and atypical cognitive development.
    Taylor MJ; Donner EJ; Pang EW
    Neurophysiol Clin; 2012; 42(1-2):19-25. PubMed ID: 22200338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A coordinate-based meta-analysis of the n-back working memory paradigm using activation likelihood estimation.
    Wang H; He W; Wu J; Zhang J; Jin Z; Li L
    Brain Cogn; 2019 Jun; 132():1-12. PubMed ID: 30708115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term brain effects of N-back training: an fMRI study.
    Miró-Padilla A; Bueichekú E; Ventura-Campos N; Flores-Compañ MJ; Parcet MA; Ávila C
    Brain Imaging Behav; 2019 Aug; 13(4):1115-1127. PubMed ID: 30006860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cognitive load-dependent activation patterns using working memory task-based fMRI at various levels of difficulty.
    Miri Ashtiani SN; Daliri MR
    Sci Rep; 2023 Sep; 13(1):16476. PubMed ID: 37777667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.
    Halahalli HN; John JP; Lukose A; Jain S; Kutty BM
    Brain Struct Funct; 2015 Nov; 220(6):3611-26. PubMed ID: 25139625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study.
    Thürling M; Hautzel H; Küper M; Stefanescu MR; Maderwald S; Ladd ME; Timmann D
    Neuroimage; 2012 Sep; 62(3):1537-50. PubMed ID: 22634219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaming is related to enhanced working memory performance and task-related cortical activity.
    Moisala M; Salmela V; Hietajärvi L; Carlson S; Vuontela V; Lonka K; Hakkarainen K; Salmela-Aro K; Alho K
    Brain Res; 2017 Jan; 1655():204-215. PubMed ID: 27815094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.
    Kharitonova M; Winter W; Sheridan MA
    J Cogn Neurosci; 2015 Sep; 27(9):1775-88. PubMed ID: 25961641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Representations of Cognitive Control and Working Memory Are Dependent Yet Non-Interacting.
    Harding IH; Harrison BJ; Breakspear M; Pantelis C; Yücel M
    Cereb Cortex; 2016 Feb; 26(2):557-65. PubMed ID: 25249406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory.
    Bedwell JS; Horner MD; Yamanaka K; Li X; Myrick H; Nahas Z; George MS
    Int J Neurosci; 2005 Jul; 115(7):1017-32. PubMed ID: 16051547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of behavioural and neural bases of visuo-spatial working memory with an fMRI paradigm based on an n-back task.
    Dores AR; Barbosa F; Carvalho IP; Almeida I; Guerreiro S; da Rocha BM; de Sousa L; Castro-Caldas A
    J Neuropsychol; 2017 Mar; 11(1):122-134. PubMed ID: 26083786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brief bursts of infrasound may improve cognitive function--an fMRI study.
    Weichenberger M; Kühler R; Bauer M; Hensel J; Brühl R; Ihlenfeld A; Ittermann B; Gallinat J; Koch C; Sander T; Kühn S
    Hear Res; 2015 Oct; 328():87-93. PubMed ID: 26260309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory.
    Gillis MM; Garcia S; Hampstead BM
    Behav Brain Res; 2016 Sep; 311():192-200. PubMed ID: 27233825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data.
    Honey GD; Fu CH; Kim J; Brammer MJ; Croudace TJ; Suckling J; Pich EM; Williams SC; Bullmore ET
    Neuroimage; 2002 Oct; 17(2):573-82. PubMed ID: 12377135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder.
    Vogan VM; Francis KE; Morgan BR; Smith ML; Taylor MJ
    J Neurodev Disord; 2018 Jun; 10(1):19. PubMed ID: 29859034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder.
    de Vries FE; de Wit SJ; Cath DC; van der Werf YD; van der Borden V; van Rossum TB; van Balkom AJ; van der Wee NJ; Veltman DJ; van den Heuvel OA
    Biol Psychiatry; 2014 Dec; 76(11):878-87. PubMed ID: 24365484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.