BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 29732902)

  • 61. Conservation of the PBL-RBOH immune module in land plants.
    Chu J; Monte I; DeFalco TA; Köster P; Derbyshire P; Menke FLH; Zipfel C
    Curr Biol; 2023 Mar; 33(6):1130-1137.e5. PubMed ID: 36796360
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
    Kawarazaki T; Kimura S; Iizuka A; Hanamata S; Nibori H; Michikawa M; Imai A; Abe M; Kaya H; Kuchitsu K
    Biochim Biophys Acta; 2013 Dec; 1833(12):2775-2780. PubMed ID: 23872431
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase-mediated ROS to promote infection.
    Chopra D; Hasan MS; Matera C; Chitambo O; Mendy B; Mahlitz SV; Naz AA; Szumski S; Janakowski S; Sobczak M; Mithöfer A; Kyndt T; Grundler FMW; Siddique S
    New Phytol; 2021 Oct; 232(1):318-331. PubMed ID: 34133755
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils.
    Creed TM; Tandon S; Ward RA; McLeish KR
    Inflamm Res; 2017 Oct; 66(10):891-899. PubMed ID: 28638979
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.
    Souabni H; Ezzine A; Bizouarn T; Baciou L
    Methods Mol Biol; 2017; 1635():27-43. PubMed ID: 28755362
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Omega-3 fatty acid supplement reduces activation of NADPH oxidase in intracranial atherosclerosis stenosis.
    Shen J; Rastogi R; Guan L; Li F; Du H; Geng X; Ding Y
    Neurol Res; 2018 Jun; 40(6):499-507. PubMed ID: 29576013
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots.
    Pourrut B; Perchet G; Silvestre J; Cecchi M; Guiresse M; Pinelli E
    J Plant Physiol; 2008 Apr; 165(6):571-9. PubMed ID: 17931743
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Unveiling what makes the reactive oxygen species burst transient: the role of PB1CP in plant immunity.
    Torres MÁ
    New Phytol; 2024 Feb; 241(4):1384-1386. PubMed ID: 38179607
    [No Abstract]   [Full Text] [Related]  

  • 69. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis.
    Svegliati S; Spadoni T; Moroncini G; Gabrielli A
    Free Radic Biol Med; 2018 Sep; 125():90-97. PubMed ID: 29694853
    [TBL] [Abstract][Full Text] [Related]  

  • 70. NADPH oxidase-derived reactive oxygen species: Dosis facit venenum.
    Schröder K
    Exp Physiol; 2019 Apr; 104(4):447-452. PubMed ID: 30737851
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana.
    Asai S; Ohta K; Yoshioka H
    Plant Cell; 2008 May; 20(5):1390-406. PubMed ID: 18515503
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.
    Oliveira JSS; Santos GDS; Moraes JA; Saliba AM; Barja-Fidalgo TC; Mattos-Guaraldi AL; Nagao PE
    Mem Inst Oswaldo Cruz; 2018; 113(6):e140421. PubMed ID: 29641644
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model.
    Sharma N; Nehru B
    Mol Neurobiol; 2016 Jul; 53(5):3326-3337. PubMed ID: 26081143
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Research progress of NADPH oxidases and their inhibitors].
    Yang XL; Chen YJ; Hu GY; Li QB
    Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice.
    Wang X; Zhang MM; Wang YJ; Gao YT; Li R; Wang GF; Li WQ; Liu WT; Chen KM
    Physiol Plant; 2016 Apr; 156(4):421-43. PubMed ID: 26400148
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase.
    Xiong H; Hua L; Reyna-Llorens I; Shi Y; Chen KM; Smirnoff N; Kromdijk J; Hibberd JM
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34155141
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NADPH Oxidases and Measurement of Reactive Oxygen Species.
    Amanso A; Lyle AN; Griendling KK
    Methods Mol Biol; 2017; 1527():219-232. PubMed ID: 28116720
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nitro-oleic acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach.
    Arruebarrena Di Palma A; Di Fino LM; Salvatore SR; D'Ambrosio JM; García-Mata C; Schopfer FJ; Laxalt AM
    J Plant Physiol; 2020; 246-247():153128. PubMed ID: 32065921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. NADPH oxidases and the evolution of plant salinity tolerance.
    Liu M; Yu H; Ouyang B; Shi C; Demidchik V; Hao Z; Yu M; Shabala S
    Plant Cell Environ; 2020 Dec; 43(12):2957-2968. PubMed ID: 33043459
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Current status of NADPH oxidase research in cardiovascular pharmacology.
    Rodiño-Janeiro BK; Paradela-Dobarro B; Castiñeiras-Landeira MI; Raposeiras-Roubín S; González-Juanatey JR; Alvarez E
    Vasc Health Risk Manag; 2013; 9():401-28. PubMed ID: 23983473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.