These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2973303)

  • 21. Energy costs of walking and standing with functional neuromuscular stimulation and long leg braces.
    Marsolais EB; Edwards BG
    Arch Phys Med Rehabil; 1988 Apr; 69(4):243-9. PubMed ID: 3258509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reproducibility of energy cost of locomotion in ambulatory children with spina bifida.
    De Groot JF; Takken T; Schoenmakers MA; Tummers L; Vanhees L; Helders PJ
    Gait Posture; 2010 Feb; 31(2):159-63. PubMed ID: 19875289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy cost of ambulation with different methods of foot and ankle immobilization.
    Fowler PT; Botte MJ; Mathewson JW; Speth SR; Byrne TP; Sutherland DH
    J Orthop Res; 1993 May; 11(3):416-21. PubMed ID: 8326448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic energy expenditure during spring-loaded crutch ambulation.
    Seeley MK; Sandberg RP; Chacon JF; Funk MD; Nokes N; Mack GW
    J Sport Rehabil; 2011 Nov; 20(4):419-27. PubMed ID: 22012496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of appropriate lower extremity orthotic management on ambulation, pain, and fatigue in a postpolio population.
    Waring WP; Maynard F; Grady W; Grady R; Boyles C
    Arch Phys Med Rehabil; 1989 May; 70(5):371-5. PubMed ID: 2719540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches.
    Gil-Agudo A; Pérez-Rizo E; Del Ama-Espinosa A; Crespo-Ruiz B; Pérez-Nombela S; Sánchez-Ramos A
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):551-7. PubMed ID: 19457601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical approach to the functional assessment of the use of crutches for ambulation.
    Ganguli S; Bose KS; Datta SR; Chatterjee BB; Roy BN
    Ergonomics; 1974 May; 17(3):365-74. PubMed ID: 4280342
    [No Abstract]   [Full Text] [Related]  

  • 28. Energy expenditure in patients with low-, mid-, or high-thoracic paraplegia using Scott-Craig knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Merritt JL
    Mayo Clin Proc; 1985 Mar; 60(3):165-8. PubMed ID: 3974297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy cost of ambulation in paraplegic patients using Craig-Scott braces.
    Huang CT; Kuhlemeier KV; Moore NB; Fine PR
    Arch Phys Med Rehabil; 1979 Dec; 60(12):595-600. PubMed ID: 518268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy expenditure in wheelchair racing and handbiking - a basis for prevention of cardiovascular diseases in those with disabilities.
    Abel T; Kröner M; Rojas Vega S; Peters C; Klose C; Platen P
    Eur J Cardiovasc Prev Rehabil; 2003 Oct; 10(5):371-6. PubMed ID: 14663299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinematic and kinetic effects of solid, hinged, and no ankle-foot orthoses on stair locomotion in healthy adults.
    Radtka SA; Oliveira GB; Lindstrom KE; Borders MD
    Gait Posture; 2006 Oct; 24(2):211-8. PubMed ID: 16260141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida.
    Duffy CM; Graham HK; Cosgrove AP
    J Pediatr Orthop; 2000; 20(3):356-61. PubMed ID: 10823604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children.
    Oosterveld MJ; Van Der Kuip M; De Meer K; De Greef HJ; Gemke RJ
    Pediatr Crit Care Med; 2006 Mar; 7(2):147-53. PubMed ID: 16531947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Walking and wheelchair energetics in persons with paraplegia.
    Cerny D; Waters R; Hislop H; Perry J
    Phys Ther; 1980 Sep; 60(9):1133-9. PubMed ID: 7413741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy.
    Radtka SA; Skinner SR; Johanson ME
    Gait Posture; 2005 Apr; 21(3):303-10. PubMed ID: 15760746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy expenditure of diplegic ambulation using flexible plastic ankle foot orthoses.
    Suzuki N; Shinohara T; Kimizuka M; Yamaguchi K; Mita K
    Bull Hosp Jt Dis; 2000; 59(2):76-80. PubMed ID: 10983255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical activity capacity in children with myelomeningocele.
    Agre JC; Findley TW; McNally MC; Habeck R; Leon AS; Stradel L; Birkebak R; Schmalz R
    Arch Phys Med Rehabil; 1987 Jun; 68(6):372-7. PubMed ID: 3592952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of floor surface on the energy cost of wheelchair propulsion.
    Wolfe GA; Waters R; Hislop HJ
    Phys Ther; 1977 Sep; 57(9):1022-7. PubMed ID: 142993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.