These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29733444)
1. Building a minimal and generalizable model of transcription factor-based biosensors: Showcasing flavonoids. Trabelsi H; Koch M; Faulon JL Biotechnol Bioeng; 2018 Sep; 115(9):2292-2304. PubMed ID: 29733444 [TBL] [Abstract][Full Text] [Related]
2. Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in Wang R; Cress BF; Yang Z; Hordines JC; Zhao S; Jung GY; Wang Z; Koffas MAG ACS Synth Biol; 2019 Sep; 8(9):2121-2130. PubMed ID: 31433622 [TBL] [Abstract][Full Text] [Related]
3. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor. De Paepe B; Maertens J; Vanholme B; De Mey M ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705 [TBL] [Abstract][Full Text] [Related]
4. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors. Hartline CJ; Zhang F ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119 [TBL] [Abstract][Full Text] [Related]
5. Design and Characterization of a Generalist Biosensor for Indole Derivatives. Pham C; Stogios PJ; Savchenko A; Mahadevan R ACS Synth Biol; 2024 Jul; 13(7):2246-2252. PubMed ID: 38875315 [TBL] [Abstract][Full Text] [Related]
7. Chimeric LysR-Type Transcriptional Biosensors for Customizing Ligand Specificity Profiles toward Flavonoids. De Paepe B; Maertens J; Vanholme B; De Mey M ACS Synth Biol; 2019 Feb; 8(2):318-331. PubMed ID: 30563319 [TBL] [Abstract][Full Text] [Related]
8. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Van Brempt M; Peeters AI; Duchi D; De Wannemaeker L; Maertens J; De Paepe B; De Mey M Microb Cell Fact; 2022 Mar; 21(1):49. PubMed ID: 35346204 [TBL] [Abstract][Full Text] [Related]
9. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Siedler S; Stahlhut SG; Malla S; Maury J; Neves AR Metab Eng; 2014 Jan; 21():2-8. PubMed ID: 24188962 [TBL] [Abstract][Full Text] [Related]
10. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors. Mannan AA; Liu D; Zhang F; OyarzĂșn DA ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198 [TBL] [Abstract][Full Text] [Related]
11. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. Ding N; Zhou S; Deng Y ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477 [TBL] [Abstract][Full Text] [Related]
12. Transcription factor-based biosensors in biotechnology: current state and future prospects. Mahr R; Frunzke J Appl Microbiol Biotechnol; 2016 Jan; 100(1):79-90. PubMed ID: 26521244 [TBL] [Abstract][Full Text] [Related]
13. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion. Younger AKD; Su PY; Shepard AJ; Udani SV; Cybulski TR; Tyo KEJ; Leonard JN Protein Eng Des Sel; 2018 Feb; 31(2):55-63. PubMed ID: 29385546 [TBL] [Abstract][Full Text] [Related]
14. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics. Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736 [TBL] [Abstract][Full Text] [Related]
15. In Vivo Screening Method for the Identification and Characterization of Prokaryotic, Metabolite-Responsive Transcription Factors. Bernauw AJ; De Kock V; Bervoets I Methods Mol Biol; 2022; 2516():113-141. PubMed ID: 35922625 [TBL] [Abstract][Full Text] [Related]
16. Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Lacey RF; Ye D; Ruffing AM Appl Microbiol Biotechnol; 2019 Mar; 103(6):2797-2808. PubMed ID: 30645690 [TBL] [Abstract][Full Text] [Related]
17. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Rogers JK; Guzman CD; Taylor ND; Raman S; Anderson K; Church GM Nucleic Acids Res; 2015 Sep; 43(15):7648-60. PubMed ID: 26152303 [TBL] [Abstract][Full Text] [Related]
18. Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors. Zhou GJ; Zhang F Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185503 [TBL] [Abstract][Full Text] [Related]
19. A Versatile Transcription Factor Biosensor System Responsive to Multiple Aromatic and Indole Inducers. Nasr MA; Timmins LR; Martin VJJ; Kwan DH ACS Synth Biol; 2022 Apr; 11(4):1692-1698. PubMed ID: 35316041 [TBL] [Abstract][Full Text] [Related]
20. Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli. Cayron J; Prudent E; Escoffier C; Gueguen E; Mandrand-Berthelot MA; Pignol D; Garcia D; Rodrigue A Environ Sci Pollut Res Int; 2017 Jan; 24(1):4-14. PubMed ID: 26498802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]