BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 29733606)

  • 1. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation Frosting on Micropillar Surfaces - Effect of Microscale Roughness on Ice Propagation.
    Shen Y; Zou H; Wang S
    Langmuir; 2020 Nov; 36(45):13563-13574. PubMed ID: 33146014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling condensation and frost growth with chemical micropatterns.
    Boreyko JB; Hansen RR; Murphy KR; Nath S; Retterer ST; Collier CP
    Sci Rep; 2016 Jan; 6():19131. PubMed ID: 26796663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Frost Propagation on Breath Figures.
    Paulovics D; Raufaste C; Frisch T; Claudet C; Celestini F
    Langmuir; 2022 Mar; 38(9):2972-2978. PubMed ID: 35196019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic Description of Interdroplet Ice-Bridge Formation during Condensation Frosting.
    Curiotto S; Paulovics D; Raufaste C; Celestini F; Frisch T; Leroy F; Cheynis F; Müller P
    Langmuir; 2023 Jan; 39(1):579-587. PubMed ID: 36534788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascade Freezing of Supercooled Water Droplet Collectives.
    Graeber G; Dolder V; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Nov; 12(11):11274-11281. PubMed ID: 30354059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.
    Hou Y; Yu M; Shang Y; Zhou P; Song R; Xu X; Chen X; Wang Z; Yao S
    Phys Rev Lett; 2018 Feb; 120(7):075902. PubMed ID: 29542940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing.
    Buttersack T; Bauerecker S
    J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retardation of freezing of precooled, impinged water droplets on glass surfaces with microgrooves and silane coating.
    Yonezawa S; Kasahara K; Waku T; Hagiwara Y
    J Chem Phys; 2022 Sep; 157(11):114701. PubMed ID: 36137786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
    Pan Z; Dash S; Weibel JA; Garimella SV
    Langmuir; 2013 Dec; 29(51):15831-41. PubMed ID: 24320680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-Phase Temperature Mapping of Evaporating Microdroplets.
    Mousa MH; Günay AA; Orejon D; Khodakarami S; Nawaz K; Miljkovic N
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15925-15938. PubMed ID: 33755427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
    Nath S; Boreyko JB
    Langmuir; 2016 Aug; 32(33):8350-65. PubMed ID: 27463696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.