These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 2973372)

  • 1. Diastolic characteristics and cardiac energetics of isolated hearts exposed to volume and pressure overload.
    Friberg P
    Cardiovasc Res; 1988 May; 22(5):329-39. PubMed ID: 2973372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional adaptation in the rat myocardium and coronary vascular bed caused by changes in pressure and volume load.
    Friberg P
    Acta Physiol Scand Suppl; 1985; 540():1-47. PubMed ID: 3161269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial energetics and diastolic dimensions of the heart in experimental hypertension.
    Friberg P
    Basic Res Cardiol; 1987; 82 Suppl 2():201-14. PubMed ID: 3663017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural adaptation of the rat left ventricle in response to changes in pressure and volume loads.
    Friberg P; Folkow B; Nordlander M
    Acta Physiol Scand; 1985 Sep; 125(1):67-79. PubMed ID: 2931946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts.
    Lorell BH; Wexler LF; Momomura S; Weinberg E; Apstein CS
    Circ Res; 1986 May; 58(5):653-63. PubMed ID: 3708763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depressor effect of diabetes in the spontaneously hypertensive rat: associated changes in heart performance.
    Rodgers RL
    Can J Physiol Pharmacol; 1986 Sep; 64(9):1177-84. PubMed ID: 2946385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exacerbation of left ventricular ischemic diastolic dysfunction by pressure-overload hypertrophy. Modification by specific inhibition of cardiac angiotensin converting enzyme.
    Eberli FR; Apstein CS; Ngoy S; Lorell BH
    Circ Res; 1992 May; 70(5):931-43. PubMed ID: 1314716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial and vascular structural adaptation to chronic pressure overload.
    Nordlander M; Wåhlander H; Friberg P
    J Cardiovasc Pharmacol; 1987; 10 Suppl 6():S51-61. PubMed ID: 2485030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anoxia-induced changes in ventricular diastolic compliance in two models of hypertension in rats.
    Callens-el Amrani F; Snoeckx L; Swynghedauw B
    J Hypertens; 1992 Mar; 10(3):229-36. PubMed ID: 1315819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of cardiac function, geometry, energetics and coronary reserve in hypertensive heart disease.
    Strauer BE
    Nephron; 1987; 47 Suppl 1():76-86. PubMed ID: 2962004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hypertension with minimal hypertrophy on diastolic function during demand ischemia.
    Lorell BH; Grice WN; Apstein CS
    Hypertension; 1989 Apr; 13(4):361-70. PubMed ID: 2522416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced coronary vascular turgor effect on post-ischemic diastolic function in hypertrophied hearts.
    Yamamoto H; Yamamoto F; Ichikawa H
    Interact Cardiovasc Thorac Surg; 2009 Oct; 9(4):605-8. PubMed ID: 19589788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of long-term antihypertensive therapy on cardiac function, coronary flow and myocardial oxygen consumption in spontaneously hypertensive rats.
    Friberg P; Nordlander M
    J Hypertens; 1986 Apr; 4(2):165-73. PubMed ID: 3711658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary fish oil preserves cardiac function in the hypertrophied rat heart.
    McLennan PL; Abeywardena MY; Dallimore JA; Raederstorff D
    Br J Nutr; 2012 Aug; 108(4):645-54. PubMed ID: 22067847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling gender differences in demand ischemia: a study in a rat model of genetic hypertension.
    Podesser BK; Jain M; Ngoy S; Apstein CS; Eberli FR
    Eur J Cardiothorac Surg; 2007 Feb; 31(2):298-304. PubMed ID: 17175162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac and vascular structural adaptation in experimental hypertension.
    Friberg P; Adams MA
    Eur Heart J; 1990 Nov; 11 Suppl G():65-71. PubMed ID: 2150038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of decreased left-ventricular afterload on cardiac performance in the normal and hypertrophied rat heart.
    Kissling G; Brändle M
    Basic Res Cardiol; 1991; 86 Suppl 3():167-73. PubMed ID: 1838247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensated function in hypertrophied ventricles of Wistar Kyoto and spontaneously hypertensive rats.
    Tomanek RJ; Whitaker MT
    Cardiovasc Res; 1990 Mar; 24(3):204-9. PubMed ID: 2140712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional consequences of structural adaptation of the heart in hypertension.
    Nordlander MI
    Hypertension; 1984; 6(6 Pt 2):III58-63. PubMed ID: 6240455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.