BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29733818)

  • 1. Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts.
    Tatekoshi Y; Tanno M; Kouzu H; Abe K; Miki T; Kuno A; Yano T; Ishikawa S; Ohwada W; Sato T; Niinuma T; Suzuki H; Miura T
    J Mol Cell Cardiol; 2018 Jun; 119():138-146. PubMed ID: 29733818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidoreductase-mediated injury is amplified by upregulated AMP deaminase in type 2 diabetic rat hearts under the condition of pressure overload.
    Igaki Y; Tanno M; Sato T; Kouzu H; Ogawa T; Osanami A; Yano T; Kuno A; Miki T; Nakamura T; Miura T
    J Mol Cell Cardiol; 2021 May; 154():21-31. PubMed ID: 33548240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts.
    Ogawa T; Kouzu H; Osanami A; Tatekoshi Y; Sato T; Kuno A; Fujita Y; Ino S; Shimizu M; Toda Y; Ohwada W; Yano T; Tanno M; Miki T; Miura T
    Physiol Rep; 2023 Feb; 11(4):e15608. PubMed ID: 36802195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart.
    Kouzu H; Miki T; Tanno M; Kuno A; Yano T; Itoh T; Sato T; Sunaga D; Murase H; Tobisawa T; Ogasawara M; Ishikawa S; Miura T
    J Mol Cell Cardiol; 2015 Mar; 80():136-45. PubMed ID: 25599963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine monophosphate deaminase in the endoplasmic reticulum-mitochondria interface promotes mitochondrial Ca
    Osanami A; Sato T; Toda Y; Shimizu M; Kuno A; Kouzu H; Yano T; Ohwada W; Ogawa T; Miura T; Tanno M
    J Diabetes Investig; 2023 Apr; 14(4):560-569. PubMed ID: 36815317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes.
    Takada A; Miki T; Kuno A; Kouzu H; Sunaga D; Itoh T; Tanno M; Yano T; Sato T; Ishikawa S; Miura T
    PLoS One; 2012; 7(6):e39893. PubMed ID: 22768157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of AMP-deaminase 3 knock-out in mice on enzyme activity in heart and other organs.
    Rybakowska I; Romaszko P; Zabielska M; Turyn J; Kaletha K; Barton PJ; Slominska EM; Smolenski RT
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):319-22. PubMed ID: 24940686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.
    Miller SG; Hafen PS; Law AS; Springer CB; Logsdon DL; O'Connell TM; Witczak CA; Brault JJ
    Metabolism; 2021 Oct; 123():154864. PubMed ID: 34400216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPD3-deficient mice exhibit increased erythrocyte ATP levels but anemia not improved due to PK deficiency.
    Cheng J; Morisaki H; Toyama K; Ikawa M; Okabe M; Morisaki T
    Genes Cells; 2012 Nov; 17(11):913-22. PubMed ID: 23078545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts.
    Mizuno M; Kuno A; Yano T; Miki T; Oshima H; Sato T; Nakata K; Kimura Y; Tanno M; Miura T
    Physiol Rep; 2018 Jun; 6(12):e13741. PubMed ID: 29932506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type.
    Mahnke-Zizelman DK; D'cunha J; Wojnar JM; Brogley MA; Sabina RL
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):521-9. PubMed ID: 9291127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function.
    Du JK; Cong BH; Yu Q; Wang H; Wang L; Wang CN; Tang XL; Lu JQ; Zhu XY; Ni X
    Free Radic Biol Med; 2016 Jul; 96():406-17. PubMed ID: 27174562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit composition of AMPD varies in response to changes in AMPD1 and AMPD3 gene expression in skeletal muscle.
    Fortuin FD; Morisaki T; Holmes EW
    Proc Assoc Am Physicians; 1996 Jul; 108(4):329-33. PubMed ID: 8863347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP deaminase 3 deficiency enhanced 5'-AMP induction of hypometabolism.
    Daniels IS; O Brien WG; Nath V; Zhao Z; Lee CC
    PLoS One; 2013; 8(9):e75418. PubMed ID: 24066180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells.
    Fomison-Nurse I; Saw EEL; Gandhi S; Munasinghe PE; Van Hout I; Williams MJA; Galvin I; Bunton R; Davis P; Cameron V; Katare R
    Cell Death Differ; 2018 Jul; 25(7):1336-1349. PubMed ID: 29302057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway.
    Kuwabara Y; Horie T; Baba O; Watanabe S; Nishiga M; Usami S; Izuhara M; Nakao T; Nishino T; Otsu K; Kita T; Kimura T; Ono K
    Circ Res; 2015 Jan; 116(2):279-88. PubMed ID: 25362209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase.
    Nandi SS; Zheng H; Sharma NM; Shahshahan HR; Patel KP; Mishra PK
    Diabetes; 2016 Oct; 65(10):3075-90. PubMed ID: 27411382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle.
    Davis PR; Miller SG; Verhoeven NA; Morgan JS; Tulis DA; Witczak CA; Brault JJ
    Metabolism; 2020 Jul; 108():154257. PubMed ID: 32370945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preserved postischemic heart function in sucrose-fed type 2 diabetic OLETF rats.
    Chen H; Higashino H; Kamenov ZA; Azuma M; Lee WH; Yang XQ; Zhou DJ; Yuan WJ
    Life Sci; 2003 May; 72(25):2839-51. PubMed ID: 12697267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase.
    Wang YS; Zhou J; Hong K; Cheng XS; Li YG
    Cell Physiol Biochem; 2015; 35(4):1546-56. PubMed ID: 25792377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.