BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29733997)

  • 1. Engineering enzymatic assembly lines for the production of new antimicrobials.
    Kalkreuter E; Williams GJ
    Curr Opin Microbiol; 2018 Oct; 45():140-148. PubMed ID: 29733997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural biology of biosynthetic megaenzymes.
    Weissman KJ
    Nat Chem Biol; 2015 Sep; 11(9):660-70. PubMed ID: 26284673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering enzymatic assembly lines to produce new antibiotics.
    Bozhüyük KA; Micklefield J; Wilkinson B
    Curr Opin Microbiol; 2019 Oct; 51():88-96. PubMed ID: 31743841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into multienzyme docking in hybrid PKS-NRPS megasynthetases revealed by heterologous expression and genetic engineering.
    Li Y; Weissman KJ; Müller R
    Chembiochem; 2010 May; 11(8):1069-75. PubMed ID: 20391455
    [No Abstract]   [Full Text] [Related]  

  • 5. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics.
    Nikolouli K; Mossialos D
    Biotechnol Lett; 2012 Aug; 34(8):1393-403. PubMed ID: 22481301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
    Ansari MZ; Sharma J; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2008 Oct; 9():454. PubMed ID: 18950525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical biology of modular biosynthetic enzymes.
    Meier JL; Burkart MD
    Chem Soc Rev; 2009 Jul; 38(7):2012-45. PubMed ID: 19551180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking domain-mediated subunit interactions in natural product megasynth(et)ases.
    Smith HG; Beech MJ; Lewandowski JR; Challis GL; Jenner M
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33640957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elements of an NRPS cyclization domain and its intermodule docking domain.
    Dowling DP; Kung Y; Croft AK; Taghizadeh K; Kelly WL; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12432-12437. PubMed ID: 27791103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorialization of fungal polyketide synthase-peptide synthetase hybrid proteins.
    Kakule TB; Lin Z; Schmidt EW
    J Am Chem Soc; 2014 Dec; 136(51):17882-90. PubMed ID: 25436464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphopantetheinyl transferase KirP activates the ACP and PCP domains of the kirromycin NRPS/PKS of Streptomyces collinus Tü 365.
    Pavlidou M; Pross EK; Musiol EM; Kulik A; Wohlleben W; Weber T
    FEMS Microbiol Lett; 2011 Jun; 319(1):26-33. PubMed ID: 21401713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-carbamoylation of 2,4-diaminobutyrate reroutes the outcome in padanamide biosynthesis.
    Du YL; Dalisay DS; Andersen RJ; Ryan KS
    Chem Biol; 2013 Aug; 20(8):1002-11. PubMed ID: 23911586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Efficient production of polyketide products in Streptomyces hosts - A review].
    Yao Y; Wang W; Yang K
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):418-28. PubMed ID: 27382785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin.
    Gerc AJ; Song L; Challis GL; Stanley-Wall NR; Coulthurst SJ
    PLoS One; 2012; 7(9):e44673. PubMed ID: 23028578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosynthetic potential of myxobacteria and their impact in drug discovery.
    Wenzel SC; Müller R
    Curr Opin Drug Discov Devel; 2009 Mar; 12(2):220-30. PubMed ID: 19333867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production.
    Skiba MA; Maloney FP; Dan Q; Fraley AE; Aldrich CC; Smith JL; Brown WC
    Methods Enzymol; 2018; 604():45-88. PubMed ID: 29779664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Ketosynthase and Acyl Carrier Protein Domains at the LnmI Nonribosomal Peptide Synthetase-Polyketide Synthase Interface for Leinamycin Biosynthesis.
    Huang Y; Tang GL; Pan G; Chang CY; Shen B
    Org Lett; 2016 Sep; 18(17):4288-91. PubMed ID: 27541042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 9. Synthetic probes for polyketide and nonribosomal peptide biosynthetic enzymes.
    Meier JL; Burkart MD
    Methods Enzymol; 2009; 458():219-54. PubMed ID: 19374985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases.
    Till M; Race PR
    Biotechnol Lett; 2014 May; 36(5):877-88. PubMed ID: 24557077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.