BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29734015)

  • 1. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology.
    Sweygers N; Somers MH; Appels L
    J Environ Manage; 2018 Aug; 219():95-102. PubMed ID: 29734015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters.
    Antonetti C; Bonari E; Licursi D; Nassi O Di Nasso N; Raspolli Galletti AM
    Molecules; 2015 Nov; 20(12):21232-53. PubMed ID: 26633324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of glucose and levulinic acid production from the cellulose fraction of giant reed (Arundo donax L.) performed in the presence of ferric chloride under microwave heating.
    Di Fidio N; Fulignati S; De Bari I; Antonetti C; Raspolli Galletti AM
    Bioresour Technol; 2020 Oct; 313():123650. PubMed ID: 32585455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent.
    Licursi D; Antonetti C; Parton R; Raspolli Galletti AM
    Bioresour Technol; 2018 Sep; 264():180-189. PubMed ID: 29803088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic processing of hemicellulosic saccharides from pine wood: product distribution and kinetic modeling.
    Rivas S; González-Muñoz MJ; Santos V; Parajó JC
    Bioresour Technol; 2014 Jun; 162():192-9. PubMed ID: 24747674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid.
    Chen SS; Wang L; Yu IKM; Tsang DCW; Hunt AJ; Jérôme F; Zhang S; Ok YS; Poon CS
    Bioresour Technol; 2018 Jan; 247():387-394. PubMed ID: 28957771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.
    Canettieri EV; de Moraes Rocha GJ; de Carvalho JA; de Almeida e Silva JB
    Bioresour Technol; 2007 Jan; 98(2):422-8. PubMed ID: 16473004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process.
    Riansa-Ngawong W; Prasertsan P
    Carbohydr Res; 2011 Jan; 346(1):103-10. PubMed ID: 21129736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.
    Qing Q; Guo Q; Wang P; Qian H; Gao X; Zhang Y
    Bioresour Technol; 2018 Jul; 260():150-156. PubMed ID: 29625287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar.
    Cao L; Yu IKM; Cho DW; Wang D; Tsang DCW; Zhang S; Ding S; Wang L; Ok YS
    Bioresour Technol; 2019 Feb; 273():251-258. PubMed ID: 30448676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose.
    Jeong TS; Um BH; Kim JS; Oh KK
    Appl Biochem Biotechnol; 2010 May; 161(1-8):22-33. PubMed ID: 20087686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride.
    Di Fidio N; Antonetti C; Raspolli Galletti AM
    Bioresour Technol; 2019 Dec; 293():122050. PubMed ID: 31454732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules.
    Rapado P; Faba L; Ordóñez S
    Bioresour Technol; 2021 Feb; 321():124500. PubMed ID: 33310411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bioprocess for corncob-derived levulinic acid production.
    Lee JP; Lee J; Min K
    Bioresour Technol; 2023 Mar; 371():128628. PubMed ID: 36646357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.