BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 29734040)

  • 1. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy breakdown in capacitive deionization.
    Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res; 2016 Nov; 104():303-311. PubMed ID: 27565115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of salt adsorption rate in membrane capacitive deionization.
    Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A
    Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy consumption in capacitive deionization - Constant current versus constant voltage operation.
    Dykstra JE; Porada S; van der Wal A; Biesheuvel PM
    Water Res; 2018 Oct; 143():367-375. PubMed ID: 29986246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions.
    García-Quismondo E; Santos C; Lado J; Palma J; Anderson MA
    Environ Sci Technol; 2013 Oct; 47(20):11866-72. PubMed ID: 24015835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation.
    Ramachandran A; Oyarzun DI; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2019 May; 155():76-85. PubMed ID: 30831426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the flow efficiency in constant-current capacitive deionization.
    Hawks SA; Knipe JM; Campbell PG; Loeb CK; Hubert MA; Santiago JG; Stadermann M
    Water Res; 2018 Feb; 129():327-336. PubMed ID: 29161663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2018 Feb; 129():394-401. PubMed ID: 29174829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process design tools and techno-economic analysis for capacitive deionization.
    Hasseler TD; Ramachandran A; Tarpeh WA; Stadermann M; Santiago JG
    Water Res; 2020 Sep; 183():116034. PubMed ID: 32736269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of the micropores electro-sorption resistance in capacitive deionization systems.
    Salamat Y; Hidrovo CH
    Water Res; 2020 Feb; 169():115286. PubMed ID: 31734390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.