These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29734040)

  • 21. Novel electrocatalytic capacitive deionization with catalytic electrodes for selective phosphonate degradation: Performance and mechanism.
    Wang C; Xue S; Xu Y; Li R; Qiu Y; Wang C; Ren LF; Shao J
    Water Res; 2024 Jun; 256():121614. PubMed ID: 38657308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mini review on metal-organic framework-based electrode materials for capacitive deionization.
    Khan MS; Leong ZY; Li DS; Qiu J; Xu X; Yang HY
    Nanoscale; 2023 Oct; 15(39):15929-15949. PubMed ID: 37772477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow electrode capacitive desalination of industrial RO reject.
    Mathew A; Janakiraman M; Karunagaran JR; Ramasamy N; Natesan B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28764-28774. PubMed ID: 38558337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capacitive deionization system with ultra-high salt adsorption performance: from lab design to agricultural applications.
    He R; Yu Y; Kong L; Liu X; Dong P
    Chem Commun (Camb); 2023 Oct; 59(83):12376-12389. PubMed ID: 37753790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A preliminary attempt at capacitive deionization with PVA/PSS gel coating as an alternative to ion exchange membrane.
    Ming H; Zhang S; Yue J; Zhao Z; Guan Y; Liu S; Gao W; Liang J
    Environ Technol; 2024 Jan; ():1-13. PubMed ID: 38234131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-Printed river-type thick carbon electrodes for docking possible practical application-level capacitive deionization.
    Shi M; Lu K; Jia H; Hong X; Yan Y; Qiang H; Wang F; Xia M
    Sci Total Environ; 2023 Dec; 904():167339. PubMed ID: 37748601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance.
    Wu G; Wang H; Huang L; Yan J; Chen X; Zhu H; Wu Y; Liu S; Shen X; Liu W; Liu X; Zhang H
    J Colloid Interface Sci; 2024 Apr; 659():993-1002. PubMed ID: 38224631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of Desalination Efficiency and Exploratory Applications of TiO
    Liu X; Zhao X
    ACS Omega; 2024 Apr; 9(16):18249-18259. PubMed ID: 38680309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-parameter optimization of the capacitance of Carbon Xerogel catalyzed by NaOH for application in supercapacitors and capacitive deionization systems.
    Alam M; Mirbagheri SA; Ghaani MR
    Heliyon; 2019 Feb; 5(2):e01196. PubMed ID: 30815595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive P and S co-doped porous hollow nanotube arrays for high performance chloride ion storage.
    Xing S; Liu N; Li Q; Liang M; Liu X; Xie H; Yu F; Ma J
    Nat Commun; 2024 Jun; 15(1):4951. PubMed ID: 38858393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers.
    Liu T; Serrano J; Elliott J; Yang X; Cathcart W; Wang Z; He Z; Liu G
    Sci Adv; 2020 Apr; 6(16):eaaz0906. PubMed ID: 32426453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ions Transport and Adsorption Mechanisms in Porous Electrodes During Capacitive-Mixing Double Layer Expansion (CDLE).
    Rica RA; Brogioli D; Ziano R; Salerno D; Mantegazza F
    J Phys Chem C Nanomater Interfaces; 2012 Aug; 116(32):16934-16938. PubMed ID: 24319518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient groundwater defluorination over a wide concentration gradient through capacitive deionization with a three-layer structured membrane coating electrode.
    Wang C; Qiu Y; Wang C; Xu Y; Ren LF; Shao J
    J Hazard Mater; 2024 Jan; 462():132703. PubMed ID: 37821246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane capacitive deionization (MCDI): A flexible and tunable technology for customized water softening.
    He Z; Miller CJ; Zhu Y; Wang Y; Fletcher J; Waite TD
    Water Res; 2024 Aug; 259():121871. PubMed ID: 38852388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A network model to predict ionic transport in porous materials.
    Henrique F; Żuk PJ; Gupta A
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401656121. PubMed ID: 38787880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of Electric and Flow Fields to Enhance Ion Transport for Energy-Efficient Electrochemical Tap-Water Softening.
    Li Z; Xu B; Tao T; Li F; Zhang G; Wang Y
    Environ Sci Technol; 2024 Apr; 58(17):7643-7652. PubMed ID: 38573006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Droplet-Based Direct-Current Electricity Generation Induced by Dynamic Electric Double Layers.
    Pan C; Meng J; Jia L; Pu X
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17649-17656. PubMed ID: 38552212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow.
    Sofos F; Karakasidis T; Sarris IE
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charging and discharging a supercapacitor in molecular simulations.
    Sitlapersad RS; Thornton AR; den Otter WK
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38275193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved desalination performance of flow-electrode capacitive deionisation by a novel drop-shape channel.
    Guan Y; Liu M; Liu Y; Yue J; Liu S; Gao W; Liang J
    Environ Technol; 2024 May; ():1-11. PubMed ID: 38753489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.