BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29734433)

  • 1. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of isolated hepatocytes: intracellular ice formation under various chemical and physical conditions.
    Harris CL; Toner M; Hubel A; Cravalho EG; Yarmush ML; Tompkins RG
    Cryobiology; 1991 Oct; 28(5):436-44. PubMed ID: 1752131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes.
    Trad FS; Toner M; Biggers JD
    Hum Reprod; 1999 Jun; 14(6):1569-77. PubMed ID: 10357978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimethyl sulfoxide and ethylene glycol promote membrane phase change during cryopreservation.
    Spindler R; Wolkers WF; Glasmacher B
    Cryo Letters; 2011; 32(2):148-57. PubMed ID: 21766144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.
    Yu G; Yap YR; Pollock K; Hubel A
    Biophys J; 2017 Jun; 112(12):2653-2663. PubMed ID: 28636921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():217-221. PubMed ID: 33031823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Video analysis of osmotic cell response during cryopreservation.
    Spindler R; Rosenhahn B; Hofmann N; Glasmacher B
    Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M; Eroğlu A; Toner M; Sadler KC
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DSC measurement of cell suspensions during successive freezing runs: implications for the mechanisms of intracellular ice formation.
    Bryant G
    Cryobiology; 1995 Apr; 32(2):114-28. PubMed ID: 7743814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of supercooling and cell volume on intracellular ice formation.
    Prickett RC; Marquez-Curtis LA; Elliott JA; McGann LE
    Cryobiology; 2015 Apr; 70(2):156-63. PubMed ID: 25707695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.