These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29734701)

  • 21. Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four
    Jang M; Jeong DW; Heo G; Kong H; Kim CT; Lee JH
    J Microbiol Biotechnol; 2021 Mar; 31(3):447-455. PubMed ID: 33526757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete nucleotide sequence analysis and identification of 7-cyano-7-deazaguanine (PreQ
    Ghosh K; Choi Y; Lee JW; Baraki H; Kim KP
    Arch Virol; 2021 Jun; 166(6):1795-1799. PubMed ID: 33839920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic characterization of six novel Bacillus pumilus bacteriophages.
    Lorenz L; Lins B; Barrett J; Montgomery A; Trapani S; Schindler A; Christie GE; Cresawn SG; Temple L
    Virology; 2013 Sep; 444(1-2):374-83. PubMed ID: 23906709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.
    Kong M; Ryu S
    Appl Environ Microbiol; 2015 Apr; 81(7):2274-83. PubMed ID: 25595773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries.
    Meerak J; Iida H; Watanabe Y; Miyashita M; Sato H; Nakagawa Y; Tahara Y
    J Gen Appl Microbiol; 2007 Dec; 53(6):315-23. PubMed ID: 18187886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis.
    Ju WT; Song YS; Jung WJ; Park RD
    Biotechnol Lett; 2014 Nov; 36(11):2319-24. PubMed ID: 25048237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group.
    El-Arabi TF; Griffiths MW; She YM; Villegas A; Lingohr EJ; Kropinski AM
    Virol J; 2013 Feb; 10():48. PubMed ID: 23388049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of LysPBC4, a novel Bacillus cereus-specific endolysin of bacteriophage PBC4.
    Na H; Kong M; Ryu S
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage vB_BsuP-Goe1: the smallest identified lytic phage of Bacillus subtilis.
    Willms IM; Hertel R
    FEMS Microbiol Lett; 2016 Oct; 363(19):. PubMed ID: 27609230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-Genome Sequencing and Genomic Analysis of a Virulent Bacteriophage Infecting Bacillus cereus.
    Kim J; Kim GH; Lee NG; Lee JS; Yoon SS
    Intervirology; 2018; 61(6):272-280. PubMed ID: 31071714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency of the insertion sequence IS4Bsu1 among Bacillus subtilis strains isolated from fermented soybean foods in Southeast Asia.
    Kimura K; Inatsu Y; Itoh Y
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1994-6. PubMed ID: 12400707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of glycerol on production of poly(gamma-Glutamic Acid) in Bacillus subtilis NX-2.
    Wu Q; Xu H; Liang J; Yao J
    Appl Biochem Biotechnol; 2010 Jan; 160(2):386-92. PubMed ID: 18696262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient production of poly-gamma-glutamic acid by Bacillus subtilis ZJU-7.
    Shi F; Xu Z; Cen P
    Appl Biochem Biotechnol; 2006 Jun; 133(3):271-82. PubMed ID: 16720907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.
    Eom JS; Lee SY; Choi HS
    J Food Sci; 2014 Nov; 79(11):M2279-87. PubMed ID: 25359543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis.
    Farlow J; Bolkvadze D; Leshkasheli L; Kusradze I; Kotorashvili A; Kotaria N; Balarjishvili N; Kvachadze L; Nikolich M; Kutateladze M
    BMC Genomics; 2018 Sep; 19(1):685. PubMed ID: 30227847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of poly-gamma-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media.
    Kedia G; Hill D; Hill R; Radecka I
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5926-34. PubMed ID: 21133130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects.
    Wang Q; Chen S; Zhang J; Sun M; Liu Z; Yu Z
    Bioresour Technol; 2008 May; 99(8):3318-23. PubMed ID: 17681465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete genome sequence of bacteriophage Deep-Purple, a novel member of the family Siphoviridae infecting Bacillus cereus.
    Hock L; Gillis A; Mahillon J
    Arch Virol; 2018 Sep; 163(9):2555-2559. PubMed ID: 29752557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Untargeted metabolomics revealed the effect of soybean metabolites on poly(γ-glutamic acid) production in fermented natto and its metabolic pathway.
    Yan D; Huang L; Mei Z; Bao H; Xie Y; Yang C; Gao X
    J Sci Food Agric; 2024 Feb; 104(3):1298-1307. PubMed ID: 37782527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand.
    Inatsu Y; Nakamura N; Yuriko Y; Fushimi T; Watanasiritum L; Kawamoto S
    Lett Appl Microbiol; 2006 Sep; 43(3):237-42. PubMed ID: 16910925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.