These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29734705)

  • 1. A CRISPR-Cas9-Based Toolkit for Fast and Precise In Vivo Genetic Engineering of
    Schilling T; Dietrich S; Hoppert M; Hertel R
    Viruses; 2018 May; 10(5):. PubMed ID: 29734705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR-Cas9 tool to explore the genetics of Bacillus subtilis phages.
    Otte K; Kühne NM; Furrer AD; Baena Lozada LP; Lutz VT; Schilling T; Hertel R
    Lett Appl Microbiol; 2020 Dec; 71(6):588-595. PubMed ID: 32615024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage vB_BsuP-Goe1: the smallest identified lytic phage of Bacillus subtilis.
    Willms IM; Hertel R
    FEMS Microbiol Lett; 2016 Oct; 363(19):. PubMed ID: 27609230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.
    Jakutyte-Giraitiene L; Gasiunas G
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1183-8. PubMed ID: 27255973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chances and limitations when uncovering essential and non-essential genes of Bacillus subtilis phages with CRISPR-Cas9.
    Kohm K; Basu S; Nawaz MM; Hertel R
    Environ Microbiol Rep; 2021 Dec; 13(6):934-944. PubMed ID: 34465000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Endospores as Phage Genome Carriers and Protective Shells.
    Gabiatti N; Yu P; Mathieu J; Lu GW; Wang X; Zhang H; Soares HM; Alvarez PJJ
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of prophage SPβ fragments on phage SP10 ribonucleotide reductase function and its multiplication in Bacillus subtilis.
    Yee LM; Matsuoka S; Yano K; Sadaie Y; Asai K
    Genes Genet Syst; 2011; 86(1):7-18. PubMed ID: 21498918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Shaped Viral Metagenomes Associated with Bacillus subtilis.
    Kohm K; Lutz VT; Friedrich I; Hertel R
    Methods Mol Biol; 2023; 2555():205-212. PubMed ID: 36306089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages.
    Song Y; He S; Jopkiewicz A; Setroikromo R; van Merkerk R; Quax WJ
    J Appl Microbiol; 2022 Oct; 133(4):2280-2298. PubMed ID: 35797344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of integrated prophages and CRISPR-Cas system in Bacillus subtilis RS10 genome.
    Iqbal S; Begum F
    Braz J Microbiol; 2024 Mar; 55(1):537-542. PubMed ID: 38216797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient expression and secretion system based on Bacillus subtilis phage phi 105 and its use for the production of B. cereus beta-lactamase I.
    Thornewell SJ; East AK; Errington J
    Gene; 1993 Oct; 133(1):47-53. PubMed ID: 8224893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis.
    Farlow J; Bolkvadze D; Leshkasheli L; Kusradze I; Kotorashvili A; Kotaria N; Balarjishvili N; Kvachadze L; Nikolich M; Kutateladze M
    BMC Genomics; 2018 Sep; 19(1):685. PubMed ID: 30227847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo functional relationships among terminal proteins of Bacillus subtilis phi 29-related phages.
    Bravo A; Hermoso JM; Salas M
    Gene; 1994 Oct; 148(1):107-12. PubMed ID: 7926823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.
    Mamberti S; Prati P; Cremaschi P; Seppi C; Morelli CF; Galizzi A; Fabbi M; Calvio C
    PLoS One; 2015; 10(7):e0130810. PubMed ID: 26158264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage typing of Bacillus subtilis and B. thuringiensis.
    Ackermann HW; Azizbekyan RR; Bernier RL; de Barjac H; Saindoux S; Valéro JR; Yu MX
    Res Microbiol; 1995 Oct; 146(8):643-57. PubMed ID: 8584788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Transcriptional Analysis of Virus-Host Interactions between Phage ϕ29 and Bacillus subtilis.
    Mojardín L; Salas M
    J Virol; 2016 Oct; 90(20):9293-304. PubMed ID: 27489274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.