BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29735357)

  • 1. Genetics and microbiology of meat.
    Weinroth MD; Britton BC; Belk KE
    Meat Sci; 2018 Oct; 144():15-21. PubMed ID: 29735357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management?
    Fegan N; Jenson I
    Meat Sci; 2018 Oct; 144():22-29. PubMed ID: 29716760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens.
    Deng X; den Bakker HC; Hendriksen RS
    Annu Rev Food Sci Technol; 2016; 7():353-74. PubMed ID: 26772415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing in livestock: Are we ready for a revolution in animal breeding industry?
    Ruan J; Xu J; Chen-Tsai RY; Li K
    Transgenic Res; 2017 Dec; 26(6):715-726. PubMed ID: 29094286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomics: The Next Culture-Independent Game Changer.
    Forbes JD; Knox NC; Ronholm J; Pagotto F; Reimer A
    Front Microbiol; 2017; 8():1069. PubMed ID: 28725217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.
    Murray JD; Maga EA
    Transgenic Res; 2016 Jun; 25(3):321-7. PubMed ID: 26820413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of genome editing on the introduction of monogenic traits in livestock.
    Bastiaansen JWM; Bovenhuis H; Groenen MAM; Megens HJ; Mulder HA
    Genet Sel Evol; 2018 Apr; 50(1):18. PubMed ID: 29661133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-year hygiene and safety monitoring of a meat processing plant which uses raw materials of global origin.
    Manios SG; Grivokostopoulos NC; Bikouli VC; Doultsos DA; Zilelidou EA; Gialitaki MA; Skandamis PN
    Int J Food Microbiol; 2015 Sep; 209():60-9. PubMed ID: 25600954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASAS Centennial Paper: Developments and future outlook for postslaughter food safety.
    Sofos JN
    J Anim Sci; 2009 Jul; 87(7):2448-57. PubMed ID: 19329476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk factors for antibiotic resistance in Campylobacter spp. isolated from raw poultry meat in Switzerland.
    Ledergerber U; Regula G; Stephan R; Danuser J; Bissig B; Stärk KD
    BMC Public Health; 2003 Dec; 3():39. PubMed ID: 14662013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems.
    Franz E; Delaquis P; Morabito S; Beutin L; Gobius K; Rasko DA; Bono J; French N; Osek J; Lindstedt BA; Muniesa M; Manning S; LeJeune J; Callaway T; Beatson S; Eppinger M; Dallman T; Forbes KJ; Aarts H; Pearl DL; Gannon VP; Laing CR; Strachan NJ
    Int J Food Microbiol; 2014 Sep; 187():57-72. PubMed ID: 25051454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and safety hazards of bacteria involved in meat fermentations.
    Talon R; Leroy S
    Meat Sci; 2011 Nov; 89(3):303-9. PubMed ID: 21620574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraintestinal Pathogenic and Antimicrobial-Resistant Escherichia coli, Including Sequence Type 131 (ST131), from Retail Chicken Breasts in the United States in 2013.
    Johnson JR; Porter SB; Johnston B; Thuras P; Clock S; Crupain M; Rangan U
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28062464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Gene Editing Tools, Like CRISPR/Cas9, on the Public Health Response to Disease Outbreaks.
    Pope SM
    Disaster Med Public Health Prep; 2017 Apr; 11(2):155-159. PubMed ID: 27640728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensive swine production and pork safety.
    Davies PR
    Foodborne Pathog Dis; 2011 Feb; 8(2):189-201. PubMed ID: 21117987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiology of fresh and restructured lamb meat: a review.
    al-Sheddy IA; Fung DY; Kastner CL
    Crit Rev Microbiol; 1995; 21(1):31-52. PubMed ID: 7576150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial spoilage, quality and safety within the context of meat sustainability.
    Saucier L
    Meat Sci; 2016 Oct; 120():78-84. PubMed ID: 27161191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an integrated approach in supporting microbiological food safety decisions.
    Havelaar AH; Bräunig J; Christiansen K; Cornu M; Hald T; Mangen MJ; Mølbak K; Pielaat A; Snary E; Van Pelt W; Velthuis A; Wahlström H
    Zoonoses Public Health; 2007; 54(3-4):103-17. PubMed ID: 17456140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Public health aspects of food irradiation.
    Käferstein FK; Moy GG
    J Public Health Policy; 1993; 14(2):149-63. PubMed ID: 8408606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.