These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29735658)

  • 21. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure.
    Guest H; Munro KJ; Prendergast G; Millman RE; Plack CJ
    Hear Res; 2018 Jul; 364():142-151. PubMed ID: 29680183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones.
    Salt AN
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):203-14. PubMed ID: 15357421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is cochlear synapse loss an origin of low-frequency hearing loss associated with endolymphatic hydrops?
    Valenzuela CV; Lee C; Mispagel A; Bhattacharyya A; Lefler SM; Payne S; Goodman SS; Ortmann AJ; Buchman CA; Rutherford MA; Lichtenhan JT
    Hear Res; 2020 Dec; 398():108099. PubMed ID: 33125982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endolymphatic leakage in case of acute loss of cochlear microphonics.
    Geyer G; Biedermann M; Schmidt HP
    Experientia; 1978 Mar; 34(3):363-4. PubMed ID: 631267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The search for noise-induced cochlear synaptopathy in humans: Mission impossible?
    Bramhall N; Beach EF; Epp B; Le Prell CG; Lopez-Poveda EA; Plack CJ; Schaette R; Verhulst S; Canlon B
    Hear Res; 2019 Jun; 377():88-103. PubMed ID: 30921644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice.
    Jensen JB; Lysaght AC; Liberman MC; Qvortrup K; Stankovic KM
    PLoS One; 2015; 10(5):e0125160. PubMed ID: 25955832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses.
    Kim KX; Payne S; Yang-Hood A; Li SZ; Davis B; Carlquist J; V-Ghaffari B; Gantz JA; Kallogjeri D; Fitzpatrick JAJ; Ohlemiller KK; Hirose K; Rutherford MA
    J Neurosci; 2019 Jun; 39(23):4434-4447. PubMed ID: 30926748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review of blast noise and the auditory system.
    Paik CB; Pei M; Oghalai JS
    Hear Res; 2022 Nov; 425():108459. PubMed ID: 35181171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure.
    Qian M; Wang Q; Wang Z; Ma Q; Wang X; Han K; Wu H; Huang Z
    Neural Plast; 2021; 2021():9919977. PubMed ID: 34221004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin.
    Lefler SM; Duncan RK; Goodman SS; Guinan JJ; Lichtenhan JT
    Front Surg; 2021; 8():687490. PubMed ID: 34676239
    [No Abstract]   [Full Text] [Related]  

  • 31. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
    Wang J; Dib M; Lenoir M; Vago P; Eybalin M; Hameg A; Pujol R; Puel JL
    Neuroscience; 2002; 111(3):635-48. PubMed ID: 12031350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic-distortion products: separation of sensory from neural dysfunction in sensorineural hearing loss in human beings and rabbits.
    Ohlms LA; Lonsbury-Martin BL; Martin GK
    Otolaryngol Head Neck Surg; 1991 Feb; 104(2):159-74. PubMed ID: 1901144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo imaging of mouse cochlea by optical coherence tomography.
    Tona Y; Sakamoto T; Nakagawa T; Adachi T; Taniguchi M; Torii H; Hamaguchi K; Kitajiri S; Ito J
    Otol Neurotol; 2014 Feb; 35(2):e84-9. PubMed ID: 24448302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory threshold and inner ear pressure: measurements in experimental endolymphatic hydrops.
    Andrews JC; Böhmer A; Hoffman L; Strelioff D
    Am J Otol; 2000 Sep; 21(5):652-6. PubMed ID: 10993453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying three otopathologies in humans.
    Parker MA
    Hear Res; 2020 Dec; 398():108079. PubMed ID: 33011456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy.
    Mehraei G; Hickox AE; Bharadwaj HM; Goldberg H; Verhulst S; Liberman MC; Shinn-Cunningham BG
    J Neurosci; 2016 Mar; 36(13):3755-64. PubMed ID: 27030760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.
    Sergeyenko Y; Lall K; Liberman MC; Kujawa SG
    J Neurosci; 2013 Aug; 33(34):13686-94. PubMed ID: 23966690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of cochlear synaptopathy on middle-ear muscle reflexes in unanesthetized mice.
    Valero MD; Hancock KE; Maison SF; Liberman MC
    Hear Res; 2018 Jun; 363():109-118. PubMed ID: 29598837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.