These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29735681)

  • 1. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.
    Kobayashi A; Horikawa M; Kirschvink JL; Golash HN
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5383-5388. PubMed ID: 29735681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.
    Kobayashi A; Golash HN; Kirschvink JL
    Cryobiology; 2016 Jun; 72(3):216-24. PubMed ID: 27087604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ferromagnetic model for the action of electric and magnetic fields in cryopreservation.
    Kobayashi A; Kirschvink JL
    Cryobiology; 2014 Apr; 68(2):163-5. PubMed ID: 24333152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation.
    Wilson PW; Heneghan AF; Haymet AD
    Cryobiology; 2003 Feb; 46(1):88-98. PubMed ID: 12623031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice nucleation forced by transient electric fields.
    Löwe JM; Hinrichsen V; Schremb M; Tropea C
    Phys Rev E; 2021 Dec; 104(6-1):064801. PubMed ID: 35030904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercooled Liquid Serum Physiologic Solution Instantly Crystallized on the Nurse Table Used for Cooling of Periorbital Region During Rhinoplasty.
    Çerçi Özkan A; Güven E; Toktaş B; Kızanlık U; Agbulut O
    Aesthetic Plast Surg; 2019 Apr; 43(2):453-456. PubMed ID: 30535556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.
    Kuwabara C; Kasuga J; Wang D; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2011 Dec; 63(3):157-63. PubMed ID: 21906586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercooling, ice nucleation and crystal growth: a systematic study in plant samples.
    Zaragotas D; Liolios NT; Anastassopoulos E
    Cryobiology; 2016 Jun; 72(3):239-43. PubMed ID: 27056262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frost Survival Mechanism of Vegetative Buds in Temperate Trees: Deep Supercooling and Extraorgan Freezing vs. Ice Tolerance.
    Neuner G; Monitzer K; Kaplenig D; Ingruber J
    Front Plant Sci; 2019; 10():537. PubMed ID: 31143193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of supercooling activities of surfactants.
    Kuwabara C; Terauchi R; Tochigi H; Takaoka H; Arakawa K; Fujikawa S
    Cryobiology; 2014 Aug; 69(1):10-6. PubMed ID: 24792543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular scale mechanism of deposition ice nucleation on silver iodide.
    Roudsari G; Lbadaoui-Darvas M; Welti A; Nenes A; Laaksonen A
    Environ Sci Atmos; 2024 Feb; 4(2):243-251. PubMed ID: 38371604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.