BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 29735716)

  • 1. Reducing resistance allele formation in CRISPR gene drive.
    Champer J; Liu J; Oh SY; Reeves R; Luthra A; Oakes N; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5522-5527. PubMed ID: 29735716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germline Cas9 promoters with improved performance for homing gene drive.
    Du J; Chen W; Jia X; Xu X; Yang E; Zhou R; Zhang Y; Metzloff M; Messer PW; Champer J
    Nat Commun; 2024 May; 15(1):4560. PubMed ID: 38811556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.
    Champer J; Reeves R; Oh SY; Liu C; Liu J; Clark AG; Messer PW
    PLoS Genet; 2017 Jul; 13(7):e1006796. PubMed ID: 28727785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular safeguarding of CRISPR gene drive experiments.
    Champer J; Chung J; Lee YL; Liu C; Yang E; Wen Z; Clark AG; Messer PW
    Elife; 2019 Jan; 8():. PubMed ID: 30666960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population.
    Champer J; Yang E; Lee E; Liu J; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24377-24383. PubMed ID: 32929034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles.
    Yang E; Metzloff M; Langmüller AM; Xu X; Clark AG; Messer PW; Champer J
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35394026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs.
    Champer SE; Oh SY; Liu C; Wen Z; Clark AG; Messer PW; Champer J
    Sci Adv; 2020 Mar; 6(10):eaaz0525. PubMed ID: 32181354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitness effects of CRISPR endonucleases in
    Langmüller AM; Champer J; Lapinska S; Xie L; Metzloff M; Champer SE; Liu J; Xu Y; Du J; Clark AG; Messer PW
    Elife; 2022 Sep; 11():. PubMed ID: 36135925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles.
    Bishop AL; López Del Amo V; Okamoto EM; Bodai Z; Komor AC; Gantz VM
    Nat Commun; 2022 May; 13(1):2595. PubMed ID: 35534475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling homing suppression gene drive in haplodiploid organisms.
    Liu Y; Champer J
    Proc Biol Sci; 2022 Apr; 289(1972):20220320. PubMed ID: 35414240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline.
    Grunwald HA; Gantz VM; Poplawski G; Xu XS; Bier E; Cooper KL
    Nature; 2019 Feb; 566(7742):105-109. PubMed ID: 30675057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes.
    Kandul NP; Liu J; Buchman A; Gantz VM; Bier E; Akbari OS
    G3 (Bethesda); 2020 Feb; 10(2):827-837. PubMed ID: 31882406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small-molecule approach to restore female sterility phenotype targeted by a homing suppression gene drive in the fruit pest Drosophila suzukii.
    Ma S; Ni X; Chen S; Qiao X; Xu X; Chen W; Champer J; Huang J
    PLoS Genet; 2024 Apr; 20(4):e1011226. PubMed ID: 38578788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives).
    Gantz VM; Bier E
    Bioessays; 2022 Aug; 44(8):e2100279. PubMed ID: 35686327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Evaluation of Drosophila CRISPR Tools Reveals Safe and Robust Alternatives to Autonomous Gene Drives in Basic Research.
    Port F; Muschalik N; Bullock SL
    G3 (Bethesda); 2015 May; 5(7):1493-502. PubMed ID: 25999583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs.
    Oberhofer G; Ivy T; Hay BA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9343-E9352. PubMed ID: 30224454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-based split homing gene drive targeting
    Yadav AK; Butler C; Yamamoto A; Patil AA; Lloyd AL; Scott MJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2301525120. PubMed ID: 37307469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.