These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29736005)

  • 1. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.
    Kim Y; Smith JG; Jain PK
    Nat Chem; 2018 Jul; 10(7):763-769. PubMed ID: 29736005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO
    Yu S; Wilson AJ; Heo J; Jain PK
    Nano Lett; 2018 Apr; 18(4):2189-2194. PubMed ID: 29405717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation Energies of Plasmonic Catalysts.
    Kim Y; Dumett Torres D; Jain PK
    Nano Lett; 2016 May; 16(5):3399-407. PubMed ID: 27064549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Harvesting of Multiple Hot Holes via Visible-Light Excitation of Plasmonic Gold Nanospheres for Selective Oxidative Bond Scission of Olefins to Carbonyls.
    Swaminathan S; Bera JK; Chandra M
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215933. PubMed ID: 36524790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitization of Pt/TiO
    Wang F; Wong RJ; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30575-30582. PubMed ID: 28829570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.
    Lu Y; Yu H; Chen S; Quan X; Zhao H
    Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation.
    Roche B; Vo T; Chang WS
    Chem Sci; 2023 Aug; 14(32):8598-8606. PubMed ID: 37592991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot carriers in action: multimodal photocatalysis on Au@SnO
    Fu X; Li GG; Villarreal E; Wang H
    Nanoscale; 2019 Apr; 11(15):7324-7334. PubMed ID: 30938391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis.
    Zhao J; Nguyen SC; Ye R; Ye B; Weller H; Somorjai GA; Alivisatos AP; Toste FD
    ACS Cent Sci; 2017 May; 3(5):482-488. PubMed ID: 28573211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Requirement for Extracting Energetic Charge Carriers from Plasmonic Metal Nanoparticles to Perform Electron-Transfer Reactions.
    Rao VG; Aslam U; Linic S
    J Am Chem Soc; 2019 Jan; 141(1):643-647. PubMed ID: 30537807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity.
    Jia H; Zhu XM; Jiang R; Wang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2560-2571. PubMed ID: 28054765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Watching Visible Light-Driven CO
    Kumari G; Zhang X; Devasia D; Heo J; Jain PK
    ACS Nano; 2018 Aug; 12(8):8330-8340. PubMed ID: 30089207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-concentrating plasmonic Au superstructures with significantly visible-light-enhanced catalytic performance.
    Yang J; Li Y; Zu L; Tong L; Liu G; Qin Y; Shi D
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8200-8. PubMed ID: 25840556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design for gold nanoparticle-based plasmonic catalysts and electrodes for water oxidation towards artificial photosynthesis.
    Tada H
    Dalton Trans; 2022 Mar; 51(9):3383-3393. PubMed ID: 35147621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular Homogeneous Chromophore-Catalyst Assemblies.
    Mulfort KL; Utschig LM
    Acc Chem Res; 2016 May; 49(5):835-43. PubMed ID: 27104312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step and Surfactant-Free Fabrication of Gold-Nanoparticle-Decorated Bismuth Oxychloride Nanosheets Based on Laser Ablation in Solution and Their Enhanced Visible-Light Plasmonic Photocatalysis.
    Wei Y; Zhou H; Zhang H; Zhu X; Liu G; Li Y; Cai W
    Chemphyschem; 2017 May; 18(9):1146-1154. PubMed ID: 28125162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.