These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29736127)

  • 1. Experimental Investigation of the Effect of Non-Newtonian Behavior of Blood Flow in the Fontan Circulation.
    Cheng AL; Pahlevan NM; Rinderknecht DG; Wood JC; Gharib M
    Eur J Mech B Fluids; 2018; 68():184-192. PubMed ID: 29736127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 4D flow MRI evaluation of the impact of shear-dependent fluid viscosity on in vitro Fontan circulation flow.
    Cheng AL; Wee CP; Pahlevan NM; Wood JC
    Am J Physiol Heart Circ Physiol; 2019 Dec; 317(6):H1243-H1253. PubMed ID: 31585044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery.
    Anastasiou AD; Spyrogianni AS; Koskinas KC; Giannoglou GD; Paras SV
    Med Eng Phys; 2012 Mar; 34(2):211-8. PubMed ID: 21824798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological Fontan Procedure.
    Corno AF; Owen MJ; Cangiani A; Hall EJC; Rona A
    Front Pediatr; 2019; 7():196. PubMed ID: 31179252
    [No Abstract]   [Full Text] [Related]  

  • 11. Elevated Low-Shear Blood Viscosity is Associated with Decreased Pulmonary Blood Flow in Children with Univentricular Heart Defects.
    Cheng AL; Takao CM; Wenby RB; Meiselman HJ; Wood JC; Detterich JA
    Pediatr Cardiol; 2016 Apr; 37(4):789-801. PubMed ID: 26888364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
    Gijsen FJ; Allanic E; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jul; 32(7):705-13. PubMed ID: 10400358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.
    Mann KA; Deutsch S; Tarbell JM; Geselowitz DB; Rosenberg G; Pierce WS
    J Biomech Eng; 1987 May; 109(2):139-47. PubMed ID: 3599939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset.
    Masters JC; Ketner M; Bleiweis MS; Mill M; Yoganathan A; Lucas CL
    J Biomech Eng; 2004 Dec; 126(6):709-13. PubMed ID: 15796329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.
    Liu B; Zheng J; Bach R; Tang D
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Respiration on Blood Flow in the Fontan Circulation: Insights for Imaging-Based Clinical Evaluation of the Total Cavopulmonary Connection.
    van der Woude SFS; Rijnberg FM; Hazekamp MG; Jongbloed MRM; Kenjeres S; Lamb HJ; Westenberg JJM; Roest AAW; Wentzel JJ
    Front Cardiovasc Med; 2021; 8():683849. PubMed ID: 34422920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.