These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29736341)
1. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. Wang J; Ding J; Abulimiti A; Cai L PeerJ; 2018; 6():e4703. PubMed ID: 29736341 [TBL] [Abstract][Full Text] [Related]
2. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. Ding J; Yang A; Wang J; Sagan V; Yu D PeerJ; 2018; 6():e5714. PubMed ID: 30357023 [TBL] [Abstract][Full Text] [Related]
3. Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features. Wang Z; Ding J; Zhang Z Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161939 [TBL] [Abstract][Full Text] [Related]
4. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative. Wang J; Tiyip T; Ding J; Zhang D; Liu W; Wang F; Tashpolat N PLoS One; 2017; 12(9):e0184836. PubMed ID: 28934274 [TBL] [Abstract][Full Text] [Related]
5. Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy. Lotfollahi L; Delavar MA; Biswas A; Fatehi S; Scholten T J Environ Manage; 2023 Nov; 345():118854. PubMed ID: 37647733 [TBL] [Abstract][Full Text] [Related]
6. Quantifying salinity in calcareous soils through advanced spectroscopic models: A comparative study of random forests and regression techniques across diverse land use systems. Tahmoures M; Honarbakhsh A; Afzali SF; Nourzadeh Hadad M; Ostovari Y PLoS One; 2024; 19(8):e0307853. PubMed ID: 39173042 [TBL] [Abstract][Full Text] [Related]
7. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Bai Z; Xie M; Hu B; Luo D; Wan C; Peng J; Shi Z Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015885 [TBL] [Abstract][Full Text] [Related]
8. Estimation of SO Tian A; Zhao J; Fu C; Xiong H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121647. PubMed ID: 35944403 [TBL] [Abstract][Full Text] [Related]
9. Multidimensional soil salinity data mining and evaluation from different satellites. Cao X; Chen W; Ge X; Chen X; Wang J; Ding J Sci Total Environ; 2022 Nov; 846():157416. PubMed ID: 35850342 [TBL] [Abstract][Full Text] [Related]
10. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy. Sun W; Li X; Niu B PLoS One; 2018; 13(4):e0196198. PubMed ID: 29677214 [TBL] [Abstract][Full Text] [Related]
11. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands. Zhao MS; Wang T; Lu Y; Wang S; Wu Y PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071 [TBL] [Abstract][Full Text] [Related]
12. Integrating proximal soil sensing data and environmental variables to enhance the prediction accuracy for soil salinity and sodicity in a region of Xinjiang Province, China. Zhao S; Ayoubi S; Mousavi SR; Mireei SA; Shahpouri F; Wu SX; Chen CB; Zhao ZY; Tian CY J Environ Manage; 2024 Jul; 364():121311. PubMed ID: 38875977 [TBL] [Abstract][Full Text] [Related]
13. Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy. Gao Y; Cui L; Lei B; Zhai Y; Shi T; Wang J; Chen Y; He H; Wu G Appl Spectrosc; 2014; 68(7):712-22. PubMed ID: 25014837 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Wang J; Ding J; Yu D; Teng D; He B; Chen X; Ge X; Zhang Z; Wang Y; Yang X; Shi T; Su F Sci Total Environ; 2020 Mar; 707():136092. PubMed ID: 31972911 [TBL] [Abstract][Full Text] [Related]
15. Estimation of soil salt content in the Bosten Lake watershed, Northwest China based on a support vector machine model and optimal spectral indices. Hou J; Rusuli Y PLoS One; 2023; 18(2):e0273738. PubMed ID: 36827276 [TBL] [Abstract][Full Text] [Related]
16. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720 [TBL] [Abstract][Full Text] [Related]
17. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Wang X; Zhang F; Ding J; Kung HT; Latif A; Johnson VC Sci Total Environ; 2018 Feb; 615():918-930. PubMed ID: 29017133 [TBL] [Abstract][Full Text] [Related]
18. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection. Shi T; Chen Y; Liu H; Wang J; Wu G Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784 [TBL] [Abstract][Full Text] [Related]
19. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891 [TBL] [Abstract][Full Text] [Related]
20. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]