These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 29736647)
1. Microarray-based expression analysis of phytohormone-related genes in rice seedlings during cyanide metabolism. Yu XZ; Lin YJ; Lu CJ; Gupta DK Environ Sci Pollut Res Int; 2018 Jul; 25(20):19701-19712. PubMed ID: 29736647 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors. Yang YW; Chen HC; Jen WF; Liu LY; Chang MC PLoS One; 2015; 10(7):e0131391. PubMed ID: 26133169 [TBL] [Abstract][Full Text] [Related]
3. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Cheng S; Huang Y; Zhu N; Zhao Y Gene; 2014 Oct; 549(2):266-74. PubMed ID: 25106855 [TBL] [Abstract][Full Text] [Related]
4. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Huang Y; Chen H; Reinfelder JR; Liang X; Sun C; Liu C; Li F; Yi J Sci Total Environ; 2019 May; 666():445-460. PubMed ID: 30802660 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Moons A Planta; 2008 Dec; 229(1):53-71. PubMed ID: 18830621 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. Jisha V; Dampanaboina L; Vadassery J; Mithöfer A; Kappara S; Ramanan R PLoS One; 2015; 10(6):e0127831. PubMed ID: 26035591 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Zhang M; Liu X; Yuan L; Wu K; Duan J; Wang X; Yang L Plant Physiol Biochem; 2012 Jan; 50(1):79-86. PubMed ID: 21855360 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism. Sun L; Di DW; Li G; Li Y; Kronzucker HJ; Shi W J Plant Physiol; 2020; 246-247():153137. PubMed ID: 32112956 [TBL] [Abstract][Full Text] [Related]
9. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid. Chi WC; Chen YA; Hsiung YC; Fu SF; Chou CH; Trinh NN; Chen YC; Huang HJ BMC Genomics; 2013 May; 14():351. PubMed ID: 23705659 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of Oryza sativa in responses to different concentrations of thiocyanate. Lin YJ; Yu XZ; Zhang Q Environ Sci Pollut Res Int; 2019 Apr; 26(12):11696-11709. PubMed ID: 30806930 [TBL] [Abstract][Full Text] [Related]
11. Gravistimulation effects on Oryza sativa amino acid profile, growth pattern and expression of OsPIN genes. Farooq M; Jan R; Kim KM Sci Rep; 2020 Oct; 10(1):17303. PubMed ID: 33057095 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Sun L; Wang J; Song K; Sun Y; Qin Q; Xue Y Sci Rep; 2019 Jul; 9(1):10177. PubMed ID: 31308454 [TBL] [Abstract][Full Text] [Related]
13. On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Yu XZ; Lu PC; Yu Z Ecotoxicology; 2012 Mar; 21(2):548-56. PubMed ID: 22068263 [TBL] [Abstract][Full Text] [Related]
14. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793 [TBL] [Abstract][Full Text] [Related]
15. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide. Yu XZ; Zhang XH Ecotoxicology; 2016 Jul; 25(5):888-99. PubMed ID: 26992391 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. Lin CY; Trinh NN; Lin CW; Huang HJ Plant Physiol Biochem; 2013 May; 66():98-104. PubMed ID: 23500712 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). Yu LJ; Luo YF; Liao B; Xie LJ; Chen L; Xiao S; Li JT; Hu SN; Shu WS New Phytol; 2012 Jul; 195(1):97-112. PubMed ID: 22537016 [TBL] [Abstract][Full Text] [Related]
18. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Wang X; Wu P; Xia M; Wu Z; Chen Q; Liu F Gene; 2002 Sep; 297(1-2):93-102. PubMed ID: 12384290 [TBL] [Abstract][Full Text] [Related]
19. Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. Singh K; Singla-Pareek SL; Pareek A OMICS; 2011 Dec; 15(12):913-24. PubMed ID: 22181020 [TBL] [Abstract][Full Text] [Related]
20. Identification and expression analysis of CYS-A1, CYS-C1, NIT4 genes in rice seedlings exposed to cyanide. Yu XZ; Lin YJ; Lu CJ; Zhang XH Ecotoxicology; 2017 Sep; 26(7):956-965. PubMed ID: 28623432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]