These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29736707)
1. Validation and Development of an Escherichia coli Riboflavin Pathway Phenotypic Screen Hit as a Small-Molecule Ligand of the Flavin Mononucleotide Riboswitch. Balibar CJ; Villafania A; Barbieri CM; Murgolo N; Roemer T; Wang H; Howe JA Methods Mol Biol; 2018; 1787():19-40. PubMed ID: 29736707 [TBL] [Abstract][Full Text] [Related]
2. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Wang H; Mann PA; Xiao L; Gill C; Galgoci AM; Howe JA; Villafania A; Barbieri CM; Malinverni JC; Sher X; Mayhood T; McCurry MD; Murgolo N; Flattery A; Mack M; Roemer T Cell Chem Biol; 2017 May; 24(5):576-588.e6. PubMed ID: 28434876 [TBL] [Abstract][Full Text] [Related]
3. Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch. Howe JA; Xiao L; Fischmann TO; Wang H; Tang H; Villafania A; Zhang R; Barbieri CM; Roemer T RNA Biol; 2016 Oct; 13(10):946-954. PubMed ID: 27485612 [TBL] [Abstract][Full Text] [Related]
4. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987 [TBL] [Abstract][Full Text] [Related]
6. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. Rizvi NF; Howe JA; Nahvi A; Klein DJ; Fischmann TO; Kim HY; McCoy MA; Walker SS; Hruza A; Richards MP; Chamberlin C; Saradjian P; Butko MT; Mercado G; Burchard J; Strickland C; Dandliker PJ; Smith GF; Nickbarg EB ACS Chem Biol; 2018 Mar; 13(3):820-831. PubMed ID: 29412640 [TBL] [Abstract][Full Text] [Related]
7. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Pedrolli DB; Matern A; Wang J; Ester M; Siedler K; Breaker R; Mack M Nucleic Acids Res; 2012 Sep; 40(17):8662-73. PubMed ID: 22740651 [TBL] [Abstract][Full Text] [Related]
8. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
9. Gram-Negative Antibiotic Active Through Inhibition of an Essential Riboswitch. Motika SE; Ulrich RJ; Geddes EJ; Lee HY; Lau GW; Hergenrother PJ J Am Chem Soc; 2020 Jun; 142(24):10856-10862. PubMed ID: 32432858 [TBL] [Abstract][Full Text] [Related]
10. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. Lee ER; Blount KF; Breaker RR RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992 [TBL] [Abstract][Full Text] [Related]
11. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Takemoto N; Tanaka Y; Inui M; Yukawa H Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272 [TBL] [Abstract][Full Text] [Related]
12. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285 [TBL] [Abstract][Full Text] [Related]
13. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch. Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556 [TBL] [Abstract][Full Text] [Related]
14. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study. Wakchaure PD; Jana K; Ganguly B J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025 [TBL] [Abstract][Full Text] [Related]
15. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Jaroensuk J; Chuaboon L; Kesornpun C; Chaiyen P Arch Biochem Biophys; 2023 Oct; 748():109762. PubMed ID: 37739114 [TBL] [Abstract][Full Text] [Related]
16. Rare variants of the FMN riboswitch class in Atilho RM; Perkins KR; Breaker RR RNA; 2019 Jan; 25(1):23-34. PubMed ID: 30287481 [TBL] [Abstract][Full Text] [Related]
17. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. Mansjö M; Johansson J RNA Biol; 2011; 8(4):674-80. PubMed ID: 21593602 [TBL] [Abstract][Full Text] [Related]
18. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. Gutiérrez-Preciado A; Torres AG; Merino E; Bonomi HR; Goldbaum FA; García-Angulo VA PLoS One; 2015; 10(5):e0126124. PubMed ID: 25938806 [TBL] [Abstract][Full Text] [Related]
19. Two Are Better Than One: Dual Targeting of Riboswitches by Metabolite Analogs. Krajewski SS; Ignatov D; Johansson J Cell Chem Biol; 2017 May; 24(5):535-537. PubMed ID: 28525764 [TBL] [Abstract][Full Text] [Related]
20. Binding free-energy landscapes of small molecule binder and non-binder to FMN riboswitch: All-atom molecular dynamics. Higo J; Bekker GJ; Kamiya N; Fukuda I; Fukunishi Y Biophys Physicobiol; 2023; 20(4):e200047. PubMed ID: 38344029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]