These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29736707)

  • 21. A Riboflavin Transporter in Bdellovibrio exovorous JSS.
    Rodionova IA; Heidari Tajabadi F; Zhang Z; Rodionov DA; Saier MH
    J Mol Microbiol Biotechnol; 2019; 29(1-6):27-34. PubMed ID: 31509826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-Activity Relationship of Flavin Analogues That Target the Flavin Mononucleotide Riboswitch.
    Vicens Q; Mondragón E; Reyes FE; Coish P; Aristoff P; Berman J; Kaur H; Kells KW; Wickens P; Wilson J; Gadwood RC; Schostarez HJ; Suto RK; Blount KF; Batey RT
    ACS Chem Biol; 2018 Oct; 13(10):2908-2919. PubMed ID: 30107111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora.
    Blount KF; Megyola C; Plummer M; Osterman D; O'Connell T; Aristoff P; Quinn C; Chrusciel RA; Poel TJ; Schostarez HJ; Stewart CA; Walker DP; Wuts PG; Breaker RR
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5736-46. PubMed ID: 26169403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H₂O₂ stress.
    Yang P; Chen Z; Shan Z; Ding X; Liu L; Guo J
    Microbiol Res; 2014; 169(5-6):411-6. PubMed ID: 24103862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Similarities and Differences in Ligand Binding to Protein and RNA Targets: The Case of Riboflavin.
    Bosio S; Bernetti M; Rocchia W; Masetti M
    J Chem Inf Model; 2024 Jun; 64(11):4570-4586. PubMed ID: 38800845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Novel targets for antibiotics discovery: riboswitches].
    Jia DF; Jia DF; Jia DF
    Yao Xue Xue Bao; 2013 Sep; 48(9):1361-8. PubMed ID: 24358767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch.
    Crielaard S; Maassen R; Vosman T; Rempkens I; Velema WA
    J Am Chem Soc; 2022 Jun; 144(23):10462-10470. PubMed ID: 35666649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets.
    Long Q; Ji L; Wang H; Xie J
    Chem Biol Drug Des; 2010 Apr; 75(4):339-47. PubMed ID: 20148904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum Mechanics Helps Uncover Atypical Recognition Features in the Flavin Mononucleotide Riboswitch.
    Deb I; Wong H; Tacubao C; Frank AT
    J Phys Chem B; 2021 Aug; 125(30):8342-8350. PubMed ID: 34310879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2009 Mar; 458(7235):233-7. PubMed ID: 19169240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An mRNA structure that controls gene expression by binding FMN.
    Winkler WC; Cohen-Chalamish S; Breaker RR
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15908-13. PubMed ID: 12456892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6868-6872. PubMed ID: 29663603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reporter Gene-Based Screening for TPP Riboswitch Activators.
    Lünse CE; Mayer G
    Methods Mol Biol; 2017; 1520():227-235. PubMed ID: 27873255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Employing a ZTP Riboswitch to Detect Bacterial Folate Biosynthesis Inhibitors in a Small Molecule High-Throughput Screen.
    Perkins KR; Atilho RM; Moon MH; Breaker RR
    ACS Chem Biol; 2019 Dec; 14(12):2841-2850. PubMed ID: 31609568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes.
    Vikram ; Mishra V; Rana A; Ahire JJ
    3 Biotech; 2022 Oct; 12(10):278. PubMed ID: 36275359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An engineered riboswitch as a potential gene-regulatory platform for reducing antibacterial drug resistance.
    Feng X; Liu L; Duan X; Wang S
    Chem Commun (Camb); 2011 Jan; 47(1):173-5. PubMed ID: 20589309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The
    Eschbach SH; Hien EDM; Ghosh T; Lamontagne AM; Lafontaine DA
    RNA; 2024 Nov; 30(12):1660-1673. PubMed ID: 39366707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.