These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29736776)

  • 81. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency.
    Wang J; Yuan B; Han RPS
    J Mech Behav Biomed Mater; 2018 Jan; 77():314-320. PubMed ID: 28961518
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.
    Vanderburgh JP; Fernando SJ; Merkel AR; Sterling JA; Guelcher SA
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28892261
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.
    Liu X; Ma PX
    Biomaterials; 2009 Sep; 30(25):4094-103. PubMed ID: 19481080
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media density and viscosity.
    Cámara-Torres M; Sinha R; Mota C; Moroni L
    Acta Biomater; 2020 Jan; 101():183-195. PubMed ID: 31731025
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Crosslinked porous three-dimensional cellulose nanofibers-gelatine biocomposite scaffolds for tissue regeneration.
    Mirtaghavi A; Baldwin A; Tanideh N; Zarei M; Muthuraj R; Cao Y; Zhao G; Geng J; Jin H; Luo J
    Int J Biol Macromol; 2020 Dec; 164():1949-1959. PubMed ID: 32791272
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.
    Naghieh S; Karamooz-Ravari MR; Sarker MD; Karki E; Chen X
    J Mech Behav Biomed Mater; 2018 Apr; 80():111-118. PubMed ID: 29414466
    [TBL] [Abstract][Full Text] [Related]  

  • 87. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond.
    Kilian D; Holtzhausen S; Groh W; Sembdner P; Czichy C; Lode A; Stelzer R; Gelinsky M
    Acta Biomater; 2023 Mar; 158():308-323. PubMed ID: 36563775
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Additive Manufacturing Using Melt Extruded Thermoplastics for Tissue Engineering.
    Calore AR; Sinha R; Harings J; Bernaerts KV; Mota C; Moroni L
    Methods Mol Biol; 2021; 2147():75-99. PubMed ID: 32840812
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.
    Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O
    Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Poly(ε-caprolactone-
    Fuoco T; Ahlinder A; Jain S; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Jan; 21(1):188-198. PubMed ID: 31549825
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of micropatterned nanofibrous scaffolds for neural network activity readout for high-throughput screening.
    Wang L; Kisaalita WS
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):238-49. PubMed ID: 20524200
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering.
    Diaz-Gomez L; Smith BT; Kontoyiannis PD; Bittner SM; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2019 Jan; 25(1):12-24. PubMed ID: 30421648
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study.
    Kim HY; Jung SY; Lee SJ; Lee HJ; Truong MD; Kim HS
    Laryngoscope; 2019 Feb; 129(2):351-357. PubMed ID: 30229920
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.
    Bongiovanni Abel S; Montini Ballarin F; Abraham GA
    Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Rapid fabrication and screening of tailored functional 3D biomaterials.
    Conde-González A; Dutta D; Wallace R; Callanan A; Bradley M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110489. PubMed ID: 31923957
    [TBL] [Abstract][Full Text] [Related]  

  • 97. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine.
    Shirwaiker RA; Fisher MB; Anderson B; Schuchard KG; Warren PB; Maze B; Grondin P; Ligler FS; Pourdeyhimi B
    Tissue Eng Part C Methods; 2020 Jul; 26(7):364-374. PubMed ID: 32552453
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Scaffold: a novel carrier for cell and drug delivery.
    Garg T; Singh O; Arora S; Murthy R
    Crit Rev Ther Drug Carrier Syst; 2012; 29(1):1-63. PubMed ID: 22356721
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
    Oh SH; Lee JH
    Biomed Mater; 2013 Feb; 8(1):014101. PubMed ID: 23472257
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A comparison of degradable synthetic polymer fibers for anterior cruciate ligament reconstruction.
    Tovar N; Bourke S; Jaffe M; Murthy NS; Kohn J; Gatt C; Dunn MG
    J Biomed Mater Res A; 2010 May; 93(2):738-47. PubMed ID: 19623532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.