These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29736865)

  • 21. Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient.
    Zamora-Camacho FJ; Reguera S; Moreno-Rueda G
    J Evol Biol; 2014 Dec; 27(12):2820-8. PubMed ID: 25387908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient.
    von May R; Catenazzi A; Corl A; Santa-Cruz R; Carnaval AC; Moritz C
    Ecol Evol; 2017 May; 7(9):3257-3267. PubMed ID: 28480023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevational distribution and conservation biogeography of phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia.
    Herzog SK; Hamel-Leigue AC; Larsen TH; Mann DJ; Soria-Auza RW; Gill BD; Edmonds WD; Spector S
    PLoS One; 2013; 8(5):e64963. PubMed ID: 23717678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method to account for thermal boundary layers during the estimation of CTmax in small ectotherms.
    Corley RB; Dawson W; Bishop TR
    J Therm Biol; 2023 Aug; 116():103673. PubMed ID: 37527565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of thermal tolerance in determining elevational distributions of four arthropod taxa in mountain ranges of southern Asia.
    Khaliq I; Shahid MJ; Kamran H; Sheraz M; Awais M; Shabir M; Asghar M; Rehman A; Riaz M; Braschler B; Sanders NJ; Hof C
    J Anim Ecol; 2023 Oct; 92(10):2052-2066. PubMed ID: 37649274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testing the reliability and ecological implications of ramping rates in the measurement of Critical Thermal maximum.
    Leong CM; Tsang TPN; Guénard B
    PLoS One; 2022; 17(3):e0265361. PubMed ID: 35286353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S; Suppo C
    Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community.
    Bujan J; Yanoviak SP; Kaspari M
    Ecol Evol; 2016 Sep; 6(17):6282-91. PubMed ID: 27648242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aridity and land use negatively influence a dominant species' upper critical thermal limits.
    Andrew NR; Miller C; Hall G; Hemmings Z; Oliver I
    PeerJ; 2019; 6():e6252. PubMed ID: 30656070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis.
    Dewenter BS; Shah AA; Hughes J; Poff NL; Thompson R; Kefford BJ
    Ecol Evol; 2024 Feb; 14(2):e10937. PubMed ID: 38405410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance.
    Warren RJ; Chick L
    Glob Chang Biol; 2013 Jul; 19(7):2082-8. PubMed ID: 23504958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation in thermal tolerance of North American ants.
    Verble-Pearson RM; Gifford ME; Yanoviak SP
    J Therm Biol; 2015 Feb; 48():65-8. PubMed ID: 25660632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in host-parasitoid food web structure with elevation.
    Maunsell SC; Kitching RL; Burwell CJ; Morris RJ
    J Anim Ecol; 2015 Mar; 84(2):353-63. PubMed ID: 25244661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics.
    Wardhaugh CW; Stone MJ; Stork NE
    Sci Rep; 2018 Jun; 8(1):8559. PubMed ID: 29867113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaf-cutting ants' critical and voluntary thermal limits show complex responses to size, heating rates, hydration level, and humidity.
    Lima C; Helene AF; Camacho A
    J Comp Physiol B; 2022 Mar; 192(2):235-245. PubMed ID: 34837117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical thermal limits in ants and their implications under climate change.
    Nascimento G; Câmara T; Arnan X
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1287-1305. PubMed ID: 35174946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient.
    Law SJ; Bishop TR; Eggleton P; Griffiths H; Ashton L; Parr C
    J Anim Ecol; 2020 Feb; 89(2):347-359. PubMed ID: 31637702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.