These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29736865)

  • 41. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
    Kaspari M; Clay NA; Lucas J; Revzen S; Kay A; Yanoviak SP
    Ecology; 2016 Apr; 97(4):1038-47. PubMed ID: 27220219
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle.
    Riddell EA; Mutanen M; Ghalambor CK
    Glob Chang Biol; 2023 Sep; 29(18):5184-5198. PubMed ID: 37376709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of seed size, ant worker size, and seed removal rate to elevation in Mediterranean grasslands.
    Silvestre M; Aguilar A; Seoane J; Azcárate FM
    Oecologia; 2019 Mar; 189(3):781-793. PubMed ID: 30799515
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species.
    Lawhorn KA; Yanoviak SP
    Environ Entomol; 2022 Dec; 51(6):1218-1223. PubMed ID: 36346643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis.
    Gutiérrez-Pesquera LM; Tejedo M; Camacho A; Enriquez-Urzelai U; Katzenberger M; Choda M; Pintanel P; Nicieza AG
    Ecol Evol; 2022 Oct; 12(10):e9349. PubMed ID: 36225839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intraspecific variation in lizard heat tolerance alters estimates of climate impact.
    Herrando-Pérez S; Ferri-Yáñez F; Monasterio C; Beukema W; Gomes V; Belliure J; Chown SL; Vieites DR; Araújo MB
    J Anim Ecol; 2019 Feb; 88(2):247-257. PubMed ID: 30303530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for lower plasticity in CT
    Kellermann V; Sgrò CM
    J Evol Biol; 2018 Sep; 31(9):1300-1312. PubMed ID: 29876997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Does social thermal regulation constrain individual thermal tolerance in an ant species?
    Villalta I; Oms CS; Angulo E; Molinas-González CR; Devers S; Cerdá X; Boulay R
    J Anim Ecol; 2020 Sep; 89(9):2063-2076. PubMed ID: 32445419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change.
    González-Del-Pliego P; Scheffers BR; Freckleton RP; Basham EW; Araújo MB; Acosta-Galvis AR; Medina Uribe CA; Haugaasen T; Edwards DP
    J Anim Ecol; 2020 Nov; 89(11):2451-2460. PubMed ID: 32745275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extreme Insolation: Climatic Variation Shapes the Evolution of Thermal Tolerance at Multiple Scales.
    Baudier KM; D'Amelio CL; Malhotra R; O'Connor MP; O'Donnell S
    Am Nat; 2018 Sep; 192(3):347-359. PubMed ID: 30125235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia.
    Staunton KM; Nakamura A; Burwell CJ; Robson SK; Williams SE
    PLoS One; 2016; 11(5):e0155826. PubMed ID: 27192085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An alternative explanation for global trends in thermal tolerance.
    Payne NL; Smith JA
    Ecol Lett; 2017 Jan; 20(1):70-77. PubMed ID: 27905195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species.
    Nyamukondiwa C; Chidawanyika F; Machekano H; Mutamiswa R; Sands B; Mgidiswa N; Wall R
    PLoS One; 2018; 13(6):e0198610. PubMed ID: 29874290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adherence to Bergmann's rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko.
    Penniket S; Cree A
    Oecologia; 2015 Jun; 178(2):427-40. PubMed ID: 25663371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.
    Muñoz MM; Langham GM; Brandley MC; Rosauer DF; Williams SE; Moritz C
    Evolution; 2016 Nov; 70(11):2537-2549. PubMed ID: 27612295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climate-driven elevational variation in range sizes of vascular plants in the central Himalayas: A supporting case for Rapoport's rule.
    Liang J; Hu H; Ding Z; Lie G; Zhou Z; Singh PB; Zhang Z; Ji S
    Ecol Evol; 2021 Jul; 11(14):9385-9395. PubMed ID: 34306629
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat freezes niche evolution.
    Araújo MB; Ferri-Yáñez F; Bozinovic F; Marquet PA; Valladares F; Chown SL
    Ecol Lett; 2013 Sep; 16(9):1206-19. PubMed ID: 23869696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees.
    Gonzalez VH; Oyen K; Aguilar ML; Herrera A; Martin RD; Ospina R
    Ecol Evol; 2022 Dec; 12(12):e9560. PubMed ID: 36479027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.