BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29736987)

  • 1. Ionic Dependence of Gelatin Hydrogel Architecture Explored Using Small and Very Small Angle Neutron Scattering Technique.
    Wu B; Siglreitmeier M; Debus C; Schwahn D; Cölfen H; Pipich V
    Macromol Biosci; 2018 Jun; 18(6):e1800018. PubMed ID: 29736987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal structures of agar-gelatin co-hydrogels by light scattering, small-angle neutron scattering and rheology.
    Santinath Singh S; Aswal VK; Bohidar HB
    Eur Phys J E Soft Matter; 2011 Jun; 34(6):62. PubMed ID: 21706280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale structure analysis of a pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blend using small-angle scattering.
    Kämäräinen T; Nogami S; Arima-Osonoi H; Iwase H; Uchiyama H; Tozuka Y; Kadota K
    J Colloid Interface Sci; 2024 Sep; 669():975-983. PubMed ID: 38759596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.
    Whittaker JL; Balu R; Knott R; de Campo L; Mata JP; Rehm C; Hill AJ; Dutta NK; Roy Choudhury N
    Int J Biol Macromol; 2018 Jul; 114():998-1007. PubMed ID: 29545061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering.
    Martínez-Sanz M; Gidley MJ; Gilbert EP
    Soft Matter; 2016 Feb; 12(5):1534-49. PubMed ID: 26658920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Structure of Galacturonate Hydrogels: External Gelation by Ca, Zn, or Fe Cationic Cross-Linkers.
    Maire du Poset A; Lerbret A; Boué F; Zitolo A; Assifaoui A; Cousin F
    Biomacromolecules; 2019 Jul; 20(7):2864-2872. PubMed ID: 31180649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.
    Zhang G; Lv L; Deng Y; Wang C
    Macromol Rapid Commun; 2017 Jun; 38(12):. PubMed ID: 28481407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Mesh Size and Modulus by Kinetically Dependent Cross-Linking in Hydrogels.
    Zander ZK; Hua G; Wiener CG; Vogt BD; Becker ML
    Adv Mater; 2015 Oct; 27(40):6283-8. PubMed ID: 26332364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure.
    Yang Z; Hemar Y; Hilliou L; Gilbert EP; McGillivray DJ; Williams MA; Chaieb S
    Biomacromolecules; 2016 Feb; 17(2):590-600. PubMed ID: 26667303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels.
    Gelli R; Del Buffa S; Tempesti P; Bonini M; Ridi F; Baglioni P
    J Colloid Interface Sci; 2018 Feb; 511():145-154. PubMed ID: 29017100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure-property relationships.
    Narasimhan BN; Dixon AW; Mansel B; Taberner A; Mata J; Malmström J
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):638-653. PubMed ID: 36274401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology as a Mechanoscopic Method to Monitor Mineralization in Hydrogels.
    Regitsky AU; Keshavarz B; McKinley GH; Holten-Andersen N
    Biomacromolecules; 2017 Dec; 18(12):4067-4074. PubMed ID: 29099575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale model for the hierarchical architecture of native cellulose hydrogels.
    Martínez-Sanz M; Mikkelsen D; Flanagan B; Gidley MJ; Gilbert EP
    Carbohydr Polym; 2016 Aug; 147():542-555. PubMed ID: 27178962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal.
    Xing Q; Yates K; Vogt C; Qian Z; Frost MC; Zhao F
    Sci Rep; 2014 Apr; 4():4706. PubMed ID: 24736500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano- and Microstructures of Collagen-Nanocellulose Hydrogels as Engineered Extracellular Matrices.
    Curvello R; Raghuwanshi VS; Wu CM; Mata J; Garnier G
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1370-1379. PubMed ID: 38117479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar structure of methylcellulose hydrogels.
    Lott JR; McAllister JW; Arvidson SA; Bates FS; Lodge TP
    Biomacromolecules; 2013 Aug; 14(8):2484-8. PubMed ID: 23889145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-property relationship in stimulus-responsive bolaamphiphile hydrogels.
    Meister A; Bastrop M; Koschoreck S; Garamus VM; Sinemus T; Hempel G; Drescher S; Dobner B; Richtering W; Huber K; Blume A
    Langmuir; 2007 Jul; 23(14):7715-23. PubMed ID: 17547425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of polygalacturonate hydrogels using iron(II) as cross-linkers: A promising route to protect bioavailable iron against oxidation.
    Maire du Poset A; Lerbret A; Zitolo A; Cousin F; Assifaoui A
    Carbohydr Polym; 2018 May; 188():276-283. PubMed ID: 29525167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin.
    Wang Y; Qiu D; Cosgrove T; Denbow ML
    Colloids Surf B Biointerfaces; 2009 May; 70(2):254-8. PubMed ID: 19185473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.