BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29737043)

  • 1. Bioreactors for Cardiac Tissue Engineering.
    Paez-Mayorga J; Hernández-Vargas G; Ruiz-Esparza GU; Iqbal HMN; Wang X; Zhang YS; Parra-Saldivar R; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1701504. PubMed ID: 29737043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering.
    Bravo-Olín J; Martínez-Carreón SA; Francisco-Solano E; Lara AR; Beltran-Vargas NE
    Bioprocess Biosyst Eng; 2024 Jun; 47(6):767-839. PubMed ID: 38643271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for directing cells into building functional hearts and parts.
    Jafarkhani M; Salehi Z; Kowsari-Esfahan R; Shokrgozar MA; Rezaa Mohammadi M; Rajadas J; Mozafari M
    Biomater Sci; 2018 Jun; 6(7):1664-1690. PubMed ID: 29767196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical and mechanical stimulation of cardiac cells and tissue constructs.
    Stoppel WL; Kaplan DL; Black LD
    Adv Drug Deliv Rev; 2016 Jan; 96():135-55. PubMed ID: 26232525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac tissue engineering: current state and perspectives.
    Chiu LL; Iyer RK; Reis LA; Nunes SS; Radisic M
    Front Biosci (Landmark Ed); 2012 Jan; 17(4):1533-50. PubMed ID: 22201819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreactors as engineering support to treat cardiac muscle and vascular disease.
    Massai D; Cerino G; Gallo D; Pennella F; Deriu MA; Rodriguez A; Montevecchi FM; Bignardi C; Audenino A; Morbiducci U
    J Healthc Eng; 2013; 4(3):329-70. PubMed ID: 23965594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A feasibility study of a multimodal stimulation bioreactor for the conditioning of stem cell seeded cardiac patches via electrical impulses and pulsatile perfusion.
    Herrmann FEM; Lehner A; Koenig F; Hollweck T; Fano C; Dauner M; Eissner G; Hagl C; Akra B
    Biomed Mater Eng; 2019; 30(1):37-48. PubMed ID: 30530957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro cardiac tissue models: Current status and future prospects.
    Mathur A; Ma Z; Loskill P; Jeeawoody S; Healy KE
    Adv Drug Deliv Rev; 2016 Jan; 96():203-13. PubMed ID: 26428618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.
    Maidhof R; Tandon N; Lee EJ; Luo J; Duan Y; Yeager K; Konofagou E; Vunjak-Novakovic G
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e12-23. PubMed ID: 22170772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
    Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of acellular myocardial scaffolds with well-preserved cardiomyocyte lacunae, and method for applying mechanical and electrical simulation to tissue construct.
    Wang B; Williams LN; de Jongh Curry AL; Liao J
    Methods Mol Biol; 2014; 1181():189-202. PubMed ID: 25070338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering methods for myocardial regeneration.
    Parsa H; Ronaldson K; Vunjak-Novakovic G
    Adv Drug Deliv Rev; 2016 Jan; 96():195-202. PubMed ID: 26150344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the heart piece by piece: state of the art in cardiac tissue engineering.
    Hecker L; Birla RK
    Regen Med; 2007 Mar; 2(2):125-44. PubMed ID: 17465746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical aspects of cardiac tissue engineering with electrical stimulation.
    Cannizzaro C; Tandon N; Figallo E; Park H; Gerecht S; Radisic M; Elvassore N; Vunjak-Novakovic G
    Methods Mol Med; 2007; 140():291-307. PubMed ID: 18085215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing all-in-one bioreactors by combining interstitial perfusion, electrical stimulation, on-line monitoring and testing within a single chamber for cardiac constructs.
    Visone R; Talò G; Lopa S; Rasponi M; Moretti M
    Sci Rep; 2018 Nov; 8(1):16944. PubMed ID: 30446711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs.
    Putame G; Gabetti S; Carbonaro D; Meglio FD; Romano V; Sacco AM; Belviso I; Serino G; Bignardi C; Morbiducci U; Castaldo C; Massai D
    Med Eng Phys; 2020 Oct; 84():1-9. PubMed ID: 32977905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical stimulation for
    Korolj A; Wang EY; Civitarese RA; Radisic M
    Clin Sci (Lond); 2017 Jul; 131(13):1393-1404. PubMed ID: 28645929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.