These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29737164)

  • 1. Theory and Ab Initio Computation of the Anisotropic Light Emission in Monolayer Transition Metal Dichalcogenides.
    Chen HY; Palummo M; Sangalli D; Bernardi M
    Nano Lett; 2018 Jun; 18(6):3839-3843. PubMed ID: 29737164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
    Palummo M; Bernardi M; Grossman JC
    Nano Lett; 2015 May; 15(5):2794-800. PubMed ID: 25798735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-Assisted Photoluminescence from Indirect Excitons in Monolayers of Transition-Metal Dichalcogenides.
    Brem S; Ekman A; Christiansen D; Katsch F; Selig M; Robert C; Marie X; Urbaszek B; Knorr A; Malic E
    Nano Lett; 2020 Apr; 20(4):2849-2856. PubMed ID: 32084315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirality of Valley Excitons in Monolayer Transition-Metal Dichalcogenides.
    Caruso F; Schebek M; Pan Y; Vona C; Draxl C
    J Phys Chem Lett; 2022 Jun; 13(25):5894-5899. PubMed ID: 35729685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations.
    Qiu DY; Cao T; Louie SG
    Phys Rev Lett; 2015 Oct; 115(17):176801. PubMed ID: 26551134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Variations in Circularly Polarized Photoluminescence in Monolayer Transition Metal Dichalcogenides.
    McCreary KM; Currie M; Hanbicki AT; Chuang HJ; Jonker BT
    ACS Nano; 2017 Aug; 11(8):7988-7994. PubMed ID: 28763189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical spectra and exciton radiative lifetimes in bulk transition metal dichalcogenides.
    Villegas CEP; Marinho E; Venezuela P; Rocha AR
    Phys Chem Chem Phys; 2024 May; 26(17):13251-13260. PubMed ID: 38634830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Studies of Exciton g Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields.
    Deilmann T; Krüger P; Rohlfing M
    Phys Rev Lett; 2020 Jun; 124(22):226402. PubMed ID: 32567922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of twist-angle-dependent excitons in WS
    Wu K; Zhong H; Guo Q; Tang J; Zhang J; Qian L; Shi Z; Zhang C; Yuan S; Zhang S; Xu H
    Natl Sci Rev; 2022 Jun; 9(6):nwab135. PubMed ID: 35795458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise radiative lifetimes in bulk crystals from first principles: the case of wurtzite gallium nitride.
    Jhalani VA; Chen HY; Palummo M; Bernardi M
    J Phys Condens Matter; 2020 Feb; 32(8):084001. PubMed ID: 31698340
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous temperature-dependent spin-valley polarization in monolayer WS2.
    Hanbicki AT; Kioseoglou G; Currie M; Hellberg CS; McCreary KM; Friedman AL; Jonker BT
    Sci Rep; 2016 Jan; 6():18885. PubMed ID: 26728976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity Control of Excitons in Two-Dimensional Materials.
    Latini S; Ronca E; De Giovannini U; Hübener H; Rubio A
    Nano Lett; 2019 Jun; 19(6):3473-3479. PubMed ID: 31046291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the origin of excitonic states in monolayer WSe2.
    Huang J; Hoang TB; Mikkelsen MH
    Sci Rep; 2016 Mar; 6():22414. PubMed ID: 26940069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2.
    Steinhoff A; Kim JH; Jahnke F; Rösner M; Kim DS; Lee C; Han GH; Jeong MS; Wehling TO; Gies C
    Nano Lett; 2015 Oct; 15(10):6841-7. PubMed ID: 26322814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly anisotropic and robust excitons in monolayer black phosphorus.
    Wang X; Jones AM; Seyler KL; Tran V; Jia Y; Zhao H; Wang H; Yang L; Xu X; Xia F
    Nat Nanotechnol; 2015 Jun; 10(6):517-21. PubMed ID: 25915195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence enhancement at a high generation rate induced by exciton localization.
    Zheng T; Niu X; Zhao H; Wang J; Zhao W; Lu J; Ni Z
    Opt Lett; 2021 Jun; 46(11):2774-2777. PubMed ID: 34061110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid coupling enhances photoluminescence of monolayer MoS
    Shi WB; Zhang L; Wang D; Zhang RL; Zhu Y; Zhang LH; Peng R; Bao W; Fan RH; Wang M
    Opt Lett; 2018 Sep; 43(17):4128-4131. PubMed ID: 30160733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain tuning of the Stokes shift in atomically thin semiconductors.
    Niehues I; Marauhn P; Deilmann T; Wigger D; Schmidt R; Arora A; Michaelis de Vasconcellos S; Rohlfing M; Bratschitsch R
    Nanoscale; 2020 Oct; 12(40):20786-20796. PubMed ID: 33034315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS
    Cheng G; Li B; Zhao C; Yan X; Wang H; Lau KM; Wang J
    Nano Lett; 2018 Sep; 18(9):5640-5645. PubMed ID: 30139259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.