These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29737409)
1. Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Jeon JM; Song HS; Lee DG; Hong JW; Hong YG; Moon YM; Bhatia SK; Yoon JJ; Kim W; Yang YH Bioprocess Biosyst Eng; 2018 Aug; 41(8):1195-1204. PubMed ID: 29737409 [TBL] [Abstract][Full Text] [Related]
2. Isobutanol production from an engineered Shewanella oneidensis MR-1. Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718 [TBL] [Abstract][Full Text] [Related]
4. Potential production platform of n-butanol in Escherichia coli. Saini M; Hong Chen M; Chiang CJ; Chao YP Metab Eng; 2015 Jan; 27():76-82. PubMed ID: 25461833 [TBL] [Abstract][Full Text] [Related]
5. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823 [TBL] [Abstract][Full Text] [Related]
6. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing. Bao T; Hou W; Wu X; Lu L; Zhang X; Yang ST Biotechnol Bioeng; 2021 Jul; 118(7):2703-2718. PubMed ID: 33844271 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561 [TBL] [Abstract][Full Text] [Related]
8. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Du Y; Jiang W; Yu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722 [TBL] [Abstract][Full Text] [Related]
9. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. Luo H; Zeng Q; Han S; Wang Z; Dong Q; Bi Y; Zhao Y World J Microbiol Biotechnol; 2017 Apr; 33(4):76. PubMed ID: 28337710 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Ma C; Kojima K; Xu N; Mobley J; Zhou L; Yang ST; Liu XM J Biotechnol; 2015 Jan; 193():108-19. PubMed ID: 25449011 [TBL] [Abstract][Full Text] [Related]
11. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Richter H; Qureshi N; Heger S; Dien B; Cotta MA; Angenent LT Biotechnol Bioeng; 2012 Apr; 109(4):913-21. PubMed ID: 22095002 [TBL] [Abstract][Full Text] [Related]
12. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth. Duhl KL; Tefft NM; TerAvest MA Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176 [No Abstract] [Full Text] [Related]
13. Improved Butanol Production Using FASII Pathway in Jawed K; Abdelaal AS; Koffas MAG; Yazdani SS ACS Synth Biol; 2020 Sep; 9(9):2390-2398. PubMed ID: 32813973 [No Abstract] [Full Text] [Related]
14. A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1. Gruenberg MC; TerAvest MA J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37537149 [TBL] [Abstract][Full Text] [Related]
15. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1. Ozawa K; Tsapin AI; Nealson KH; Cusanovich MA; Akutsu H Appl Environ Microbiol; 2000 Sep; 66(9):4168-71. PubMed ID: 10966450 [TBL] [Abstract][Full Text] [Related]
16. An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1. Fowler GJ; Pereira-Medrano AG; Jaffe S; Pasternak G; Pham TK; Ledezma P; Hall ST; Ieropoulos IA; Wright PC Proteomics; 2016 Nov; 16(21):2764-2775. PubMed ID: 27599463 [TBL] [Abstract][Full Text] [Related]
17. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. Hunt KA; Flynn JM; Naranjo B; Shikhare ID; Gralnick JA J Bacteriol; 2010 Jul; 192(13):3345-51. PubMed ID: 20400539 [TBL] [Abstract][Full Text] [Related]
18. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells. Li F; Yin C; Sun L; Li Y; Guo X; Song H Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893 [TBL] [Abstract][Full Text] [Related]
19. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Xin F; Basu A; Yang KL; He J Bioresour Technol; 2016 Feb; 202():214-9. PubMed ID: 26710347 [TBL] [Abstract][Full Text] [Related]
20. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Guo X; Zhang H; Feng J; Yang L; Luo K; Fu H; Wang J Metab Eng; 2023 May; 77():64-75. PubMed ID: 36948242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]