BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29737409)

  • 1. Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Song HS; Lee DG; Hong JW; Hong YG; Moon YM; Bhatia SK; Yoon JJ; Kim W; Yang YH
    Bioprocess Biosyst Eng; 2018 Aug; 41(8):1195-1204. PubMed ID: 29737409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential production platform of n-butanol in Escherichia coli.
    Saini M; Hong Chen M; Chiang CJ; Chao YP
    Metab Eng; 2015 Jan; 27():76-82. PubMed ID: 25461833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing.
    Bao T; Hou W; Wu X; Lu L; Zhang X; Yang ST
    Biotechnol Bioeng; 2021 Jul; 118(7):2703-2718. PubMed ID: 33844271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.
    Du Y; Jiang W; Yu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition.
    Luo H; Zeng Q; Han S; Wang Z; Dong Q; Bi Y; Zhao Y
    World J Microbiol Biotechnol; 2017 Apr; 33(4):76. PubMed ID: 28337710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum.
    Ma C; Kojima K; Xu N; Mobley J; Zhou L; Yang ST; Liu XM
    J Biotechnol; 2015 Jan; 193():108-19. PubMed ID: 25449011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal.
    Richter H; Qureshi N; Heger S; Dien B; Cotta MA; Angenent LT
    Biotechnol Bioeng; 2012 Apr; 109(4):913-21. PubMed ID: 22095002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 13. Improved Butanol Production Using FASII Pathway in
    Jawed K; Abdelaal AS; Koffas MAG; Yazdani SS
    ACS Synth Biol; 2020 Sep; 9(9):2390-2398. PubMed ID: 32813973
    [No Abstract]   [Full Text] [Related]  

  • 14. A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1.
    Gruenberg MC; TerAvest MA
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37537149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1.
    Ozawa K; Tsapin AI; Nealson KH; Cusanovich MA; Akutsu H
    Appl Environ Microbiol; 2000 Sep; 66(9):4168-71. PubMed ID: 10966450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.
    Fowler GJ; Pereira-Medrano AG; Jaffe S; Pasternak G; Pham TK; Ledezma P; Hall ST; Ieropoulos IA; Wright PC
    Proteomics; 2016 Nov; 16(21):2764-2775. PubMed ID: 27599463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.
    Hunt KA; Flynn JM; Naranjo B; Shikhare ID; Gralnick JA
    J Bacteriol; 2010 Jul; 192(13):3345-51. PubMed ID: 20400539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.
    Xin F; Basu A; Yang KL; He J
    Bioresour Technol; 2016 Feb; 202():214-9. PubMed ID: 26710347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum.
    Guo X; Zhang H; Feng J; Yang L; Luo K; Fu H; Wang J
    Metab Eng; 2023 May; 77():64-75. PubMed ID: 36948242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.