These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 29737423)

  • 41. Electrochemiluminescence biosensor for microRNA determination based on AgNCs@MoS
    Li F; Wang M; Zhou Y; Yin H; Ai S
    Mikrochim Acta; 2021 Feb; 188(3):68. PubMed ID: 33547602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe.
    Yuan X; Tay Y; Dou X; Luo Z; Leong DT; Xie J
    Anal Chem; 2013 Feb; 85(3):1913-9. PubMed ID: 23270302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I.
    Shahdordizadeh M; Yazdian-Robati R; Ansari N; Ramezani M; Abnous K; Taghdisi SM
    Mikrochim Acta; 2018 Feb; 185(2):151. PubMed ID: 29594698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA.
    Wei S; Chen G; Jia X; Mao X; Chen T; Mao D; Zhang W; Xiong W
    Anal Chim Acta; 2020 Jan; 1095():179-184. PubMed ID: 31864620
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B; Du Y; Dong S
    Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection.
    Shah P; Rørvig-Lund A; Chaabane SB; Thulstrup PW; Kjaergaard HG; Fron E; Hofkens J; Yang SW; Vosch T
    ACS Nano; 2012 Oct; 6(10):8803-14. PubMed ID: 22947065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics.
    Sheng W; Chang Q; Shi Y; Duan W; Zhang Y; Wang S
    Mikrochim Acta; 2018 Aug; 185(9):404. PubMed ID: 30088104
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence.
    Zhang N; Si Y; Sun Z; Chen L; Li R; Qiao Y; Wang H
    Anal Chem; 2014 Dec; 86(23):11714-21. PubMed ID: 25350497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.
    Huy GD; Zhang M; Zuo P; Ye BC
    Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots-Au Nanoparticles System.
    Fu X; Gu D; Zhao S; Zhou N; Zhang H
    J Fluoresc; 2017 Sep; 27(5):1597-1605. PubMed ID: 28401410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles.
    Wang M; Su D; Wang G; Su X
    Anal Bioanal Chem; 2018 Oct; 410(26):6891-6900. PubMed ID: 30105625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles.
    Kong C; Gao L; Chen Z
    Mikrochim Acta; 2018 Oct; 185(10):488. PubMed ID: 30280258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles.
    Ma X; Guo Z; Mao Z; Tang Y; Miao P
    Mikrochim Acta; 2017 Dec; 185(1):33. PubMed ID: 29594625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles.
    Gao Y; Wu Y; Di J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():207-212. PubMed ID: 27664545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A hairpin-type DNA probe for direct colorimetric detection of endonuclease activity and inhibition based on the deaggregation of gold nanoparticles.
    Sang F; Li G; Li J; Pan J; Zhang Z; Zhang X
    Mikrochim Acta; 2019 Jan; 186(2):100. PubMed ID: 30635742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorometric determination of the activity of the biomarker terminal deoxynucleotidyl transferase via the enhancement of the fluorescence of silver nanoclusters by in-situ grown DNA tails.
    Chi BZ; Wang CL; Wang ZQ; Pi T; Zhong XL; Deng CQ; Feng YC; Li ZM
    Mikrochim Acta; 2019 Mar; 186(4):241. PubMed ID: 30868262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.
    Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M
    Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods.
    Zhang H; Liu P; Wang H; Ji X; Zhao M; Song Z
    Anal Bioanal Chem; 2021 Mar; 413(6):1541-1547. PubMed ID: 32705288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification.
    Ma GM; Huo LW; Tong YX; Wang YC; Li CP; Jia HX
    Mikrochim Acta; 2021 Sep; 188(10):355. PubMed ID: 34585278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.