These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 29737683)
1. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.]. Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683 [TBL] [Abstract][Full Text] [Related]
2. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855 [TBL] [Abstract][Full Text] [Related]
3. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Yousefi G; Homaee M; Norouzi AA Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl Zhou W; Zhang J; Zou M; Liu X; Du X; Wang Q; Liu Y; Liu Y; Li J Sci Rep; 2019 Nov; 9(1):16084. PubMed ID: 31695089 [TBL] [Abstract][Full Text] [Related]
5. Concentration estimation of heavy metal in soils from typical sewage irrigation area of Shandong Province, China using reflectance spectroscopy. Wang F; Li C; Wang J; Cao W; Wu Q Environ Sci Pollut Res Int; 2017 Jul; 24(20):16883-16892. PubMed ID: 28573565 [TBL] [Abstract][Full Text] [Related]
6. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720 [TBL] [Abstract][Full Text] [Related]
7. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891 [TBL] [Abstract][Full Text] [Related]
8. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Yu K; Van Geel M; Ceulemans T; Geerts W; Ramos MM; Serafim C; Sousa N; Castro PML; Kastendeuch P; Najjar G; Ameglio T; Ngao J; Saudreau M; Honnay O; Somers B Environ Pollut; 2018 Dec; 243(Pt B):1912-1922. PubMed ID: 30408880 [TBL] [Abstract][Full Text] [Related]
9. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Kooistra L; Salas EA; Clevers JG; Wehrens R; Leuven RS; Nienhuis PH; Buydens LM Environ Pollut; 2004; 127(2):281-90. PubMed ID: 14568727 [TBL] [Abstract][Full Text] [Related]
10. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sun W; Liu S; Zhang X; Zhu H Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742 [TBL] [Abstract][Full Text] [Related]
11. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799 [TBL] [Abstract][Full Text] [Related]
12. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Tan K; Ma W; Wu F; Du Q Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787 [TBL] [Abstract][Full Text] [Related]
13. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. Hou L; Li X; Li F J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357 [TBL] [Abstract][Full Text] [Related]
14. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Wang C; Li W; Guo M; Ji J Sci Rep; 2017 Feb; 7():40709. PubMed ID: 28198802 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data. Sun W; Skidmore AK; Wang T; Zhang X Environ Pollut; 2019 Sep; 252(Pt B):1117-1124. PubMed ID: 31252109 [TBL] [Abstract][Full Text] [Related]
16. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy. Liu J; Zhang Y; Wang H; Du Y Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():43-49. PubMed ID: 29562213 [TBL] [Abstract][Full Text] [Related]
17. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an]. Fang XB; Shi H; Liao XF; Lou Z; Zhou LY; Yu HX; Yao L; Sun LP Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1883-91. PubMed ID: 26572046 [TBL] [Abstract][Full Text] [Related]
18. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China. Qi J; Zhang H; Li X; Lu J; Zhang G Environ Monit Assess; 2016 Jul; 188(7):413. PubMed ID: 27315126 [TBL] [Abstract][Full Text] [Related]
19. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Bi C; Zhou Y; Chen Z; Jia J; Bao X Sci Total Environ; 2018 Apr; 619-620():1349-1357. PubMed ID: 29734612 [TBL] [Abstract][Full Text] [Related]
20. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities. Li Y; Li HG; Liu FC Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]