These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29737826)

  • 61. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.
    Wang Z; Wang D; Qian Z; Guo J; Dong H; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2016-24. PubMed ID: 25558778
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Macroporous Polyimide Aerogels: A Comparison between Powder Microparticles Synthesized via Wet Gel Grinding and Emulsion Processes.
    Dayarian S; Majedi Far H; Yang L
    Langmuir; 2023 Feb; 39(5):1804-1814. PubMed ID: 36706272
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition.
    Song Y; Li B; Yang S; Ding G; Zhang C; Xie X
    Sci Rep; 2015 May; 5():10337. PubMed ID: 25976019
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Novel, Controllable, and Efficient Method for Building Highly Hydrophobic Aerogels.
    Li SL; Wang YT; Zhang SJ; Sun MZ; Li J; Chu LQ; Hu CX; Huang YL; Gao DL; Schiraldi DA
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391450
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3D Printing of Lightweight Polyimide Honeycombs with the High Specific Strength and Temperature Resistance.
    Wang C; Ma S; Li D; Zhao J; Zhou H; Wang D; Zhou D; Gan T; Wang D; Liu C; Qu C; Chen C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15690-15700. PubMed ID: 33689262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Additive manufacturing of silica aerogels.
    Zhao S; Siqueira G; Drdova S; Norris D; Ubert C; Bonnin A; Galmarini S; Ganobjak M; Pan Z; Brunner S; Nyström G; Wang J; Koebel MM; Malfait WJ
    Nature; 2020 Aug; 584(7821):387-392. PubMed ID: 32814885
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels.
    Wang J; Du Y; Wang J; Gong W; Xu L; Yan L; You Y; Lu W; Zhang X
    Langmuir; 2021 May; 37(19):5923-5931. PubMed ID: 33939442
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces.
    González Lazo MA; Katrantzis I; Dalle Vacche S; Karasu F; Leterrier Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773860
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthetic Polymer Aerogels in Particulate Form.
    Paraskevopoulou P; Chriti D; Raptopoulos G; Anyfantis GC
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083421
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanically Strong and Tailorable Polyimide Aerogels Prepared with Novel Silicone Polymer Crosslinkers.
    Zhang Z; Deng Y; Lun Z; Zhang X; Yan M; He P; Li C; Pan Y
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049592
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.
    Pei X; Zhai W; Zheng W
    Langmuir; 2014 Nov; 30(44):13375-83. PubMed ID: 25340747
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane.
    Zhai T; Zheng Q; Cai Z; Turng LS; Xia H; Gong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7436-44. PubMed ID: 25822398
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Wetting Properties of Graphene Aerogels.
    De Nicola F; Viola I; Tenuzzo LD; Rasch F; Lohe MR; Nia AS; Schütt F; Feng X; Adelung R; Lupi S
    Sci Rep; 2020 Feb; 10(1):1916. PubMed ID: 32024901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption.
    Lin YF; Hsu SH
    J Colloid Interface Sci; 2017 Jan; 485():152-158. PubMed ID: 27662027
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Superelastic Polyimide Nanofiber-Based Aerogels Modified with Silicone Nanofilaments for Ultrafast Oil/Water Separation.
    Shen Y; Li D; Wang L; Zhou Y; Liu F; Wu H; Deng B; Liu Q
    ACS Appl Mater Interfaces; 2021 May; 13(17):20489-20500. PubMed ID: 33904301
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synergistic hybrid organic-inorganic aerogels.
    Wang X; Jana SC
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6423-9. PubMed ID: 23773123
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Contact-active antibacterial aerogels from cellulose nanofibrils.
    Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation.
    Zhang YG; Zhu YJ; Xiong ZC; Wu J; Chen F
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13019-13027. PubMed ID: 29611706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Superhydrophobic functionalized graphene aerogels.
    Lin Y; Ehlert GJ; Bukowsky C; Sodano HA
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2200-3. PubMed ID: 21714511
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings.
    Köklükaya O; Carosio F; Wågberg L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29082-29092. PubMed ID: 28767227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.