These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29737852)

  • 1. Cooperative Modes of Action of Antimicrobial Peptides Characterized with Atomistic Simulations: A Study on Cecropin B.
    Hsiao YW; Hedström M; Losasso V; Metz S; Crain J; Winn M
    J Phys Chem B; 2018 Jun; 122(22):5908-5921. PubMed ID: 29737852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer.
    Mukherjee S; Kar RK; Nanga RPR; Mroue KH; Ramamoorthy A; Bhunia A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19289-19299. PubMed ID: 28702543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly-L-aspartic acid C-terminus.
    Maaroufi H; Potvin M; Cusson M; Levesque RC
    Proteins; 2021 Sep; 89(9):1205-1215. PubMed ID: 33973678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
    Rice A; Wereszczynski J
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of solution behavior of magainin 2 monomers.
    Petkov P; Marinova R; Kochev V; Ilieva N; Lilkova E; Litov L
    J Biomol Struct Dyn; 2019 Mar; 37(5):1231-1240. PubMed ID: 29557267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the Crucial Residues in the Early Insertion of Pardaxin into Different Phospholipid Bilayers.
    Jafari M; Mehrnejad F; Aghdami R; Chaparzadeh N; Razaghi Moghadam Kashani Z; Doustdar F
    J Chem Inf Model; 2017 Apr; 57(4):929-941. PubMed ID: 28301157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations.
    Bond PJ; Khalid S
    Protein Pept Lett; 2010 Nov; 17(11):1313-27. PubMed ID: 20673230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of structural parameters and positive charge distance on the interaction free energy of antimicrobial peptides with membrane surface.
    Ghahremanpour MM; Sardari S
    J Biomol Struct Dyn; 2015; 33(3):502-12. PubMed ID: 24621111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.