These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29737856)

  • 1. Parametric Investigations of the Induced Shear Stress by a Laser-Generated Bubble.
    Koukouvinis P; Strotos G; Zeng Q; Gonzalez-Avila SR; Theodorakakos A; Gavaises M; Ohl CD
    Langmuir; 2018 Jun; 34(22):6428-6442. PubMed ID: 29737856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of surface cleaning by cavitation bubble dynamics and collapse.
    Chahine GL; Kapahi A; Choi JK; Hsiao CT
    Ultrason Sonochem; 2016 Mar; 29():528-49. PubMed ID: 25982895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation on the collapse of a bubble cluster near a solid wall.
    Zhang L; Zhang J; Deng J
    Phys Rev E; 2019 Apr; 99(4-1):043108. PubMed ID: 31108661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.
    Aymé-Bellegarda EJ
    J Acoust Soc Am; 1990 Aug; 88(2):1054-60. PubMed ID: 2212284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall.
    Krasovitski B; Kimmel E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):973-9. PubMed ID: 15344403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling cavitation erosion using fluid-material interaction simulations.
    Chahine GL; Hsiao CT
    Interface Focus; 2015 Oct; 5(5):20150016. PubMed ID: 26442140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of the effect of bubble distribution on multiple-bubble behavior.
    Ochiai N; Ishimoto J
    Ultrason Sonochem; 2020 Mar; 61():104818. PubMed ID: 31683237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D finite element model to study the cavitation induced stresses on blood-vessel wall during the ultrasound-only phase of photo-mediated ultrasound therapy.
    Singh R; Yang X
    AIP Adv; 2022 Apr; 12(4):045020. PubMed ID: 35465057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation.
    Jansen ED; Asshauer T; Frenz M; Motamedi M; Delacrétaz G; Welch AJ
    Lasers Surg Med; 1996; 18(3):278-93. PubMed ID: 8778524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.
    Hosseinkhah N; Goertz DE; Hynynen K
    IEEE Trans Biomed Eng; 2015 May; 62(5):1293-304. PubMed ID: 25546853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry.
    Reuter F; Cairós C; Mettin R
    Ultrason Sonochem; 2016 Nov; 33():170-181. PubMed ID: 27245968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsating Microbubble in a Micro-vessel and Mechanical Effect on Vessel Wall: A Simulation Study.
    Khodabakhshi Z; Hosseinkhah N; Ghadiri H
    J Biomed Phys Eng; 2021 Oct; 11(5):629-640. PubMed ID: 34722408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field.
    Deng JJ; Yang RF; Lu HQ
    Ultrason Sonochem; 2021 Mar; 71():105371. PubMed ID: 33360367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bubble–liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactor.
    Liu Y; Li F; Hu W; Wiltberger K; Ryll T
    Biotechnol Prog; 2014; 30(1):48-58. PubMed ID: 23925890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel.
    Swaminathan TN; Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    J Fluid Mech; 2010 Jan; 642():509-539. PubMed ID: 20305744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.