These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Raitoharju E; Lyytikäinen LP; Levula M; Oksala N; Mennander A; Tarkka M; Klopp N; Illig T; Kähönen M; Karhunen PJ; Laaksonen R; Lehtimäki T Atherosclerosis; 2011 Nov; 219(1):211-7. PubMed ID: 21820659 [TBL] [Abstract][Full Text] [Related]
4. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Wang R; Dong LD; Meng XB; Shi Q; Sun WY Biochem Biophys Res Commun; 2015 Aug; 464(2):574-9. PubMed ID: 26159918 [TBL] [Abstract][Full Text] [Related]
6. Variability of Methylation Profiles of CpG Sites in microrNA Genes in Leukocytes and Vascular Tissues of Patients with Atherosclerosis. Kucher AN; Nazarenko MS; Markov AV; Koroleva IA; Barbarash OL Biochemistry (Mosc); 2017 Jun; 82(6):698-706. PubMed ID: 28601079 [TBL] [Abstract][Full Text] [Related]
7. A cross-sectional study comparing the expression of DNA repair molecules in subjects with and without atherosclerotic plaques. Arapi B; Unal S; Malikova N; Omeroglu SN; Guven M Mol Biol Rep; 2024 Sep; 51(1):953. PubMed ID: 39230767 [TBL] [Abstract][Full Text] [Related]
8. Increased miR-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. Barbalata T; Moraru OE; Stancu CS; Devaux Y; Simionescu M; Sima AV; Niculescu LS Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339419 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of 14q32 microRNA miR-495 reduces lesion formation, intimal hyperplasia and plasma cholesterol levels in experimental restenosis. Welten SMJ; de Jong RCM; Wezel A; de Vries MR; Boonstra MC; Parma L; Jukema JW; van der Sluis TC; Arens R; Bot I; Agrawal S; Quax PHA; Nossent AY Atherosclerosis; 2017 Jun; 261():26-36. PubMed ID: 28445809 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Fan X; Wang E; Wang X; Cong X; Chen X Exp Mol Pathol; 2014 Apr; 96(2):242-9. PubMed ID: 24594117 [TBL] [Abstract][Full Text] [Related]
11. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Hao L; Wang XG; Cheng JD; You SZ; Ma SH; Zhong X; Quan L; Luo B Cardiovasc Pathol; 2014; 23(4):217-23. PubMed ID: 24877885 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Santovito D; Mandolini C; Marcantonio P; De Nardis V; Bucci M; Paganelli C; Magnacca F; Ucchino S; Mastroiacovo D; Desideri G; Mezzetti A; Cipollone F Expert Opin Ther Targets; 2013 Mar; 17(3):217-23. PubMed ID: 23339529 [TBL] [Abstract][Full Text] [Related]
13. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease. Nazarenko MS; Markov AV; Lebedev IN; Freidin MB; Sleptcov AA; Koroleva IA; Frolov AV; Popov VA; Barbarash OL; Puzyrev VP PLoS One; 2015; 10(4):e0122601. PubMed ID: 25856389 [TBL] [Abstract][Full Text] [Related]
14. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers. de Gonzalo-Calvo D; Cenarro A; Civeira F; Llorente-Cortes V Clin Investig Arterioscler; 2016; 28(4):167-77. PubMed ID: 27363781 [TBL] [Abstract][Full Text] [Related]
16. Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. de Gonzalo-Calvo D; Cenarro A; Garlaschelli K; Pellegatta F; Vilades D; Nasarre L; Camino-Lopez S; Crespo J; Carreras F; Leta R; Catapano AL; Norata GD; Civeira F; Llorente-Cortes V J Mol Cell Cardiol; 2017 May; 106():55-67. PubMed ID: 28342976 [TBL] [Abstract][Full Text] [Related]
17. Expression levels of atherosclerosis-associated miR-143 and miR-145 in the plasma of patients with hyperhomocysteinaemia. Liu K; Xuekelati S; Zhang Y; Yin Y; Li Y; Chai R; Li X; Peng Y; Wu J; Guo X BMC Cardiovasc Disord; 2017 Jun; 17(1):163. PubMed ID: 28633641 [TBL] [Abstract][Full Text] [Related]
18. Circulating microRNAs as potential biomarkers for coronary plaque rupture. Li S; Lee C; Song J; Lu C; Liu J; Cui Y; Liang H; Cao C; Zhang F; Chen H Oncotarget; 2017 Jul; 8(29):48145-48156. PubMed ID: 28624816 [TBL] [Abstract][Full Text] [Related]
19. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Bidzhekov K; Gan L; Denecke B; Rostalsky A; Hristov M; Koeppel TA; Zernecke A; Weber C Thromb Haemost; 2012 Apr; 107(4):619-25. PubMed ID: 22370758 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability. Wezel A; Welten SM; Razawy W; Lagraauw HM; de Vries MR; Goossens EA; Boonstra MC; Hamming JF; Kandimalla ER; Kuiper J; Quax PH; Nossent AY; Bot I Ann Surg; 2015 Nov; 262(5):841-7; discussion 847-8. PubMed ID: 26583674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]