BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29738246)

  • 1. Inoculation with Bacillus subtilis and Azospirillum brasilense Produces Abscisic Acid That Reduces Irt1-Mediated Cadmium Uptake of Roots.
    Xu Q; Pan W; Zhang R; Lu Q; Xue W; Wu C; Song B; Du S
    J Agric Food Chem; 2018 May; 66(20):5229-5236. PubMed ID: 29738246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.
    Cohen AC; Bottini R; Pontin M; Berli FJ; Moreno D; Boccanlandro H; Travaglia CN; Piccoli PN
    Physiol Plant; 2015 Jan; 153(1):79-90. PubMed ID: 24796562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil.
    Pan W; Lu Q; Xu QR; Zhang RR; Li HY; Yang YH; Liu HJ; Du ST
    Ecotoxicol Environ Saf; 2019 Aug; 177():100-107. PubMed ID: 30974243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis.
    Pan W; You Y; Shentu JL; Weng YN; Wang ST; Xu QR; Liu HJ; Du ST
    J Hazard Mater; 2020 Jun; 391():122189. PubMed ID: 32044630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake.
    Fan SK; Fang XZ; Guan MY; Ye YQ; Lin XY; Du ST; Jin CW
    Front Plant Sci; 2014; 5():721. PubMed ID: 25566293
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhou C; Ge N; Guo J; Zhu L; Ma Z; Cheng S; Wang J
    J Agric Food Chem; 2019 Sep; 67(36):10126-10136. PubMed ID: 31433635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating cadmium accumulation in dicotyledonous vegetables by iron fertilizer through inhibiting Fe transporter IRT1-mediated Cd uptake.
    Xu ZR; You TT; Liu WY; Ye K; Zhao FJ; Wang P
    Chemosphere; 2024 Jan; 346():140559. PubMed ID: 37898465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinase CIPK11 functions as a positive regulator in cadmium stress response in Arabidopsis.
    Gu S; Wang X; Bai J; Wei T; Sun M; Zhu L; Wang M; Zhao Y; Wei W
    Gene; 2021 Mar; 772():145372. PubMed ID: 33346096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene.
    Zhang W; Du B; Liu D; Qi X
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):312-7. PubMed ID: 25446093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux.
    Meng Y; Huang J; Jing H; Wu Q; Shen R; Zhu X
    Plant Sci; 2022 Dec; 325():111464. PubMed ID: 36130666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of hairy root system of transgenic
    Liu X; Li W; Wang M; Cao Y; Zhang T; Hu H; Cheng X; Yan Q
    Int J Phytoremediation; 2023; 25(11):1455-1462. PubMed ID: 36597829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil.
    Lu Q; Weng Y; You Y; Xu Q; Li H; Li Y; Liu H; Du S
    Environ Pollut; 2020 Feb; 257():113497. PubMed ID: 31733960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.
    Spaepen S; Bossuyt S; Engelen K; Marchal K; Vanderleyden J
    New Phytol; 2014 Feb; 201(3):850-861. PubMed ID: 24219779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level.
    Aksoy E; Jeong IS; Koiwa H
    Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
    Fukami J; Ollero FJ; de la Osa C; Valderrama-Fernández R; Nogueira MA; Megías M; Hungria M
    Arch Microbiol; 2018 Oct; 200(8):1191-1203. PubMed ID: 29881875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Sensing by the IRT1 Transporter-Receptor Orchestrates Its Own Degradation and Plant Metal Nutrition.
    Dubeaux G; Neveu J; Zelazny E; Vert G
    Mol Cell; 2018 Mar; 69(6):953-964.e5. PubMed ID: 29547723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABA-importing transporter (AIT1) synergies enhances exogenous ABA minimize heavy metals accumulations in Arabidopsis.
    Zhu Y; You Y; Zheng S; Li J; Wang Y; Wu R; Fang Z; Liu H; Du S
    J Hazard Mater; 2024 Jul; 473():134718. PubMed ID: 38797079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress.
    Vazquez A; Zawoznik M; Benavides MP; Groppa MD
    Plant Sci; 2021 Nov; 312():111056. PubMed ID: 34620450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation.
    Zhang P; Wang R; Ju Q; Li W; Tran LP; Xu J
    Plant Physiol; 2019 May; 180(1):529-542. PubMed ID: 30782964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential metal sensing and metal-dependent degradation of the broad spectrum root metal transporter IRT1.
    Spielmann J; Cointry V; Devime F; Ravanel S; Neveu J; Vert G
    Plant J; 2022 Dec; 112(5):1252-1265. PubMed ID: 36269689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.