BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29738578)

  • 1. Cancer driver mutation prediction through Bayesian integration of multi-omic data.
    Wang Z; Ng KS; Chen T; Kim TB; Wang F; Shaw K; Scott KL; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2018; 13(5):e0196939. PubMed ID: 29738578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients.
    Bertrand D; Drissler S; Chia BK; Koh JY; Li C; Suphavilai C; Tan IB; Nagarajan N
    Cancer Res; 2018 Jan; 78(1):290-301. PubMed ID: 29259006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hypergraph model for identifying and prioritizing personalized drivers in cancer.
    Zhang N; Ma F; Guo D; Pang Y; Wang C; Zhang Y; Zheng X; Wang M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012068. PubMed ID: 38683860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Framework for Identifying Mutated Driver Pathway and Cancer Progression.
    Zhang W; Wang SL
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):455-464. PubMed ID: 29990286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CanDrA: cancer-specific driver missense mutation annotation with optimized features.
    Mao Y; Chen H; Liang H; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2013; 8(10):e77945. PubMed ID: 24205039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CanDriS: posterior profiling of cancer-driving sites based on two-component evolutionary model.
    Zhao W; Yang J; Wu J; Cai G; Zhang Y; Haltom J; Su W; Dong MJ; Chen S; Wu J; Zhou Z; Gu X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive assessment of computational algorithms in predicting cancer driver mutations.
    Chen H; Li J; Wang Y; Ng PK; Tsang YH; Shaw KR; Mills GB; Liang H
    Genome Biol; 2020 Feb; 21(1):43. PubMed ID: 32079540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.