BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29738794)

  • 1. Motivational fatigue: A neurocognitive framework for the impact of effortful exertion on subsequent motivation.
    Müller T; Apps MAJ
    Neuropsychologia; 2019 Feb; 123():141-151. PubMed ID: 29738794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dorsal Anterior Cingulate Cortex Encodes the Integrated Incentive Motivational Value of Cognitive Task Performance.
    Yee DM; Crawford JL; Lamichhane B; Braver TS
    J Neurosci; 2021 Apr; 41(16):3707-3720. PubMed ID: 33707296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior.
    Arulpragasam AR; Cooper JA; Nuutinen MR; Treadway MT
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5233-E5242. PubMed ID: 29760060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurocomputational mechanisms underlying subjective valuation of effort costs.
    Chong TT; Apps M; Giehl K; Sillence A; Grima LL; Husain M
    PLoS Biol; 2017 Feb; 15(2):e1002598. PubMed ID: 28234892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal role of lateral prefrontal cortex in mental effort and fatigue.
    Soutschek A; Tobler PN
    Hum Brain Mapp; 2020 Nov; 41(16):4630-4640. PubMed ID: 32710816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural correlates of mental fatigue and reward processing: A task-based fMRI study.
    Darnai G; Matuz A; Alhour HA; Perlaki G; Orsi G; Arató Á; Szente A; Áfra E; Nagy SA; Janszky J; Csathó Á
    Neuroimage; 2023 Jan; 265():119812. PubMed ID: 36526104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.
    Salamone JD; Correa M; Farrar A; Mingote SM
    Psychopharmacology (Berl); 2007 Apr; 191(3):461-82. PubMed ID: 17225164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.
    Salamone JD; Yohn SE; López-Cruz L; San Miguel N; Correa M
    Brain; 2016 May; 139(Pt 5):1325-47. PubMed ID: 27189581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How emotion context modulates unconscious goal activation during motor force exertion.
    Blakemore RL; Neveu R; Vuilleumier P
    Neuroimage; 2017 Feb; 146():904-917. PubMed ID: 27833013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive Fatigue Effects on Physical Performance: The Role of Interoception.
    McMorris T
    Sports Med; 2020 Oct; 50(10):1703-1708. PubMed ID: 32661840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study.
    Kirsch P; Schienle A; Stark R; Sammer G; Blecker C; Walter B; Ott U; Burkart J; Vaitl D
    Neuroimage; 2003 Oct; 20(2):1086-95. PubMed ID: 14568478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain Stimulation Over the Frontopolar Cortex Enhances Motivation to Exert Effort for Reward.
    Soutschek A; Kang P; Ruff CC; Hare TA; Tobler PN
    Biol Psychiatry; 2018 Jul; 84(1):38-45. PubMed ID: 29275840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.
    Vassena E; Deraeve J; Alexander WH
    J Cogn Neurosci; 2017 Oct; 29(10):1633-1645. PubMed ID: 28654358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.
    Umemoto A; Inzlicht M; Holroyd CB
    Neuropsychologia; 2019 Feb; 123():67-76. PubMed ID: 29908953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decline of the monkey's limbic and prefrontal activity during task repetition.
    Tsujimoto T; Ogawa M; Tsukada H; Kakiuchi T; Sasaki K
    Neurosci Lett; 2000 Mar; 283(1):69-72. PubMed ID: 10729636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motivation of extended behaviors by anterior cingulate cortex.
    Holroyd CB; Yeung N
    Trends Cogn Sci; 2012 Feb; 16(2):122-8. PubMed ID: 22226543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of anterior cingulate cortex to behaviour.
    Devinsky O; Morrell MJ; Vogt BA
    Brain; 1995 Feb; 118 ( Pt 1)():279-306. PubMed ID: 7895011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal anterior cingulate cortex and the value of control.
    Shenhav A; Cohen JD; Botvinick MM
    Nat Neurosci; 2016 Sep; 19(10):1286-91. PubMed ID: 27669989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons in anterior cingulate cortex multiplex information about reward and action.
    Hayden BY; Platt ML
    J Neurosci; 2010 Mar; 30(9):3339-46. PubMed ID: 20203193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes.
    Nieuwenhuis S; Slagter HA; von Geusau NJ; Heslenfeld DJ; Holroyd CB
    Eur J Neurosci; 2005 Jun; 21(11):3161-8. PubMed ID: 15978024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.