BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

806 related articles for article (PubMed ID: 29738839)

  • 1. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.
    Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS
    Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid composition of developing tree peony (Paeonia section Moutan DC.) seeds and transcriptome analysis during seed development.
    Li SS; Wang LS; Shu QY; Wu J; Chen LG; Shao S; Yin DD
    BMC Genomics; 2015 Mar; 16(1):208. PubMed ID: 25887415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds.
    Zhang Q; Yu R; Sun D; Rahman MM; Xie L; Hu J; He L; Kilaru A; Niu L; Zhang Y
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid desaturase 3 (PsFAD3) from Paeonia suffruticosa reveals high α-linolenic acid accumulation.
    Yin DD; Xu WZ; Shu QY; Li SS; Wu Q; Feng CY; Gu ZY; Wang LS
    Plant Sci; 2018 Sep; 274():212-222. PubMed ID: 30080606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of genes encoding ω-6 desaturase PoFAD2 and PoFAD6, and ω-3 desaturase PoFAD3 for ALA accumulation in developing seeds of oil crop Paeonia ostii var. lishizhenii.
    Li L; Wang Z; Li Y; Wang D; Xiu Y; Wang H
    Plant Sci; 2021 Nov; 312():111029. PubMed ID: 34620433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds.
    Yu SY; Zhang X; Huang LB; Lyu YP; Zhang Y; Yao ZJ; Zhang XX; Yuan JH; Hu YH
    BMC Genomics; 2021 Apr; 22(1):297. PubMed ID: 33892636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas.
    Yan X; Ma L; Yang M
    Sci Rep; 2020 Jun; 10(1):10395. PubMed ID: 32587349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of microRNAs from tree peony (Paeonia ostii) and their response to copper stress.
    Jin Q; Xue Z; Dong C; Wang Y; Chu L; Xu Y
    PLoS One; 2015; 10(2):e0117584. PubMed ID: 25658957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony 'Hangshao' (Paeonia lactiflora 'Hangshao') seeds based on transcriptome analysis.
    Meng JS; Tang YH; Sun J; Zhao DQ; Zhang KL; Tao J
    BMC Genomics; 2021 Feb; 22(1):94. PubMed ID: 33522906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.
    Xiu Y; Wu G; Tang W; Peng Z; Bu X; Chao L; Yin X; Xiong J; Zhang H; Zhao X; Ding J; Ma L; Wang H; van Staden J
    J Plant Physiol; 2018 Sep; 228():121-133. PubMed ID: 29902680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of transcriptomic and proteomic data from tree peony (
    Wang X; Liang H; Guo D; Guo L; Duan X; Jia Q; Hou X
    Hortic Res; 2019; 6():111. PubMed ID: 31645965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum).
    Chen X; Sun S; Liu F; Shen E; Liu L; Ye C; Xiao B; Timko MP; Zhu QH; Fan L; Cao P
    BMC Genomics; 2019 Nov; 20(1):856. PubMed ID: 31726968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens.
    Kim HU; Lee KR; Shim D; Lee JH; Chen GQ; Hwang S
    BMC Genomics; 2016 Jun; 17():474. PubMed ID: 27342315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.
    Luo J; Shi Q; Niu L; Zhang Y
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28230761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple.
    An N; Fan S; Wang Y; Zhang L; Gao C; Zhang D; Han M
    Gene; 2018 Aug; 666():44-57. PubMed ID: 29733967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome and miRNA sequencing analyses reveal the regulatory mechanism of α-linolenic acid biosynthesis in Paeonia rockii.
    Zheng J; Yang J; Yang X; Cao Z; Cai S; Wang B; Ye J; Fu M; Zhang W; Rao S; Du D; Liao Y; Jiang X; Xu F
    Food Res Int; 2022 May; 155():111094. PubMed ID: 35400468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn.
    Wang L; Ruan C; Bao A; Li H
    BMC Plant Biol; 2021 Oct; 21(1):464. PubMed ID: 34641783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed.
    Zhang T; Song C; Song L; Shang Z; Yang S; Zhang D; Sun W; Shen Q; Zhao D
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29144390
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress.
    Deng F; Zhang X; Wang W; Yuan R; Shen F
    BMC Plant Biol; 2018 Jan; 18(1):23. PubMed ID: 29370759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.