These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29738917)

  • 1. Analysis and comparison of focused ion beam milling and vibratory polishing sample surface preparation methods for porosity study of U-Mo plate fuel for research and test reactors.
    Westman B; Miller B; Jue JF; Aitkaliyeva A; Keiser D; Madden J; Tucker JD
    Micron; 2018 Jul; 110():57-66. PubMed ID: 29738917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of manual and automated image analysis techniques for characterization of fission gas pores in irradiated U-Mo fuels.
    Smith CA; Keiser DD; Miller BD; Aitkaliyeva A
    Micron; 2019 Apr; 119():98-108. PubMed ID: 30708340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in-situ method for protecting internal cracks/pores from ion beam damage and reducing curtaining for TEM sample preparation using FIB.
    Zhong XL; Haigh SJ; Zhou X; Withers PJ
    Ultramicroscopy; 2020 Dec; 219():113135. PubMed ID: 33129062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface damage induced by FIB milling and imaging of biological samples is controllable.
    Drobne D; Milani M; Leser V; Tatti F
    Microsc Res Tech; 2007 Oct; 70(10):895-903. PubMed ID: 17661360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).
    Drobne D
    Methods Mol Biol; 2013; 950():275-92. PubMed ID: 23086881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low damage lamella preparation of metallic materials by FIB processing with low acceleration voltage and a low incident angle Ar ion milling finish.
    Sato T; Aizawa Y; Matsumoto H; Kiyohara M; Kamiya C; VON Cube F
    J Microsc; 2020 Sep; 279(3):234-241. PubMed ID: 32043578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast curtain-removal method for 3D FIB-SEM images of heterogeneous minerals.
    Liu S; Sun L; Gao J; Li K
    J Microsc; 2018 Oct; 272(1):3-11. PubMed ID: 30098210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of neon focused ion beam milling for TEM sample preparation.
    Pekin TC; Allen FI; Minor AM
    J Microsc; 2016 Oct; 264(1):59-63. PubMed ID: 27172066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM).
    Bera B; Mitra SK; Vick D
    Micron; 2011 Jul; 42(5):412-8. PubMed ID: 21208806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigating Curtaining Artifacts During Ga FIB TEM Lamella Preparation of a 14 nm FinFET Device.
    Denisyuk A; Hrnčíř T; Vincenc Oboňa J; Sharang ; Petrenec M; Michalička J
    Microsc Microanal; 2017 Jun; 23(3):484-490. PubMed ID: 28318459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The focused ion beam fold-out: sample preparation method for transmission electron microscopy.
    Floresca HC; Jeon J; Wang JG; Kim MJ
    Microsc Microanal; 2009 Dec; 15(6):558-63. PubMed ID: 19804654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of FIB milling for specimen preparation from crystalline germanium.
    Rubanov S; Munroe PR
    Micron; 2004; 35(7):549-56. PubMed ID: 15219901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.
    Edwards GW; Priest ND
    Health Phys; 2014 Nov; 107(5):417-34. PubMed ID: 25271932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.
    Luo H; Yin S; Zhang G; Liu C; Tang Q; Guo M
    Ultramicroscopy; 2017 Oct; 181():165-172. PubMed ID: 28578300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.
    Miyake A; Matsuno J; Toh S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i24-i25. PubMed ID: 25359821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional organization of the endoplasmic reticulum membrane around the mitochondrial constriction site in mammalian cells revealed by using focused-ion beam tomography.
    Ohta K; Okayama S; Togo A; Nakamura K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i34. PubMed ID: 25359839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Argon ion beam polishing: a preparation technique for evaluating the interface of osseointegrated implants with high resolution.
    Grüner D; Fäldt J; Jansson K; Shen Z
    Int J Oral Maxillofac Implants; 2011; 26(3):547-52. PubMed ID: 21691601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to expose subsurface objects of interest identified from 3D imaging: The intermediate sample preparation stage in the correlative microscopy workflow.
    Mitchell RL; Dunlop T; Volkenandt T; Russell J; Davies P; Spooner S; Pleydell-Pearce C; Johnston R
    J Microsc; 2023 Feb; 289(2):107-127. PubMed ID: 36399637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvements in performance of focused ion beam cross-sectioning: aspects of ion-sample interaction.
    Ishitani T; Umemura K; Ohnishi T; Yaguchi T; Kamino T
    J Electron Microsc (Tokyo); 2004; 53(5):443-9. PubMed ID: 15582945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-thinning using Ar ion-milling system for transmission electron microscopy specimens prepared by focused ion beam system.
    Lee MH; Kim KH
    J Microsc; 2016 Mar; 261(3):243-8. PubMed ID: 26457668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.