These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29738976)

  • 1. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process.
    Martínez O; Sánchez A; Font X; Barrena R
    Bioresour Technol; 2018 Sep; 263():136-144. PubMed ID: 29738976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces marxianus through the solid-state fermentation of sugarcane bagasse.
    Martínez O; Sánchez A; Font X; Barrena R
    Appl Microbiol Biotechnol; 2018 Jun; 102(11):4703-4716. PubMed ID: 29627852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-Batch and Sequential-Batch Approaches To Enhance the Bioproduction of 2-Phenylethanol and 2-Phenethyl Acetate in Solid-State Fermentation Residue-Based Systems.
    Martínez-Avila O; Sánchez A; Font X; Barrena R
    J Agric Food Chem; 2019 Mar; 67(12):3389-3399. PubMed ID: 30816043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorbitol production from mixtures of molasses and sugarcane bagasse hydrolysate using the thermally adapted Zymomonas mobilis ZM AD41.
    Phannarangsee Y; Jiawkhangphlu B; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P
    Sci Rep; 2024 Mar; 14(1):5563. PubMed ID: 38448501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii.
    Calabia BP; Tokiwa Y
    Biotechnol Lett; 2007 Sep; 29(9):1329-32. PubMed ID: 17541505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.
    Veana F; Martínez-Hernández JL; Aguilar CN; Rodríguez-Herrera R; Michelena G
    Braz J Microbiol; 2014; 45(2):373-7. PubMed ID: 25242918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates.
    Chacón SJ; Matias G; Ezeji TC; Maciel Filho R; Mariano AP
    Bioresour Technol; 2021 Feb; 321():124504. PubMed ID: 33307480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of 2,3-butanediol from sugarcane molasses.
    Dai JY; Zhao P; Cheng XL; Xiu ZL
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3014-24. PubMed ID: 25586489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation.
    Bender JP; Mazutti MA; de Oliveira D; Di Luccio M; Treichel H
    Appl Biochem Biotechnol; 2006; 129-132():951-8. PubMed ID: 16915703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading.
    Fan M; Zhang S; Ye G; Zhang H; Xie J
    Biotechnol Biofuels; 2018; 11():329. PubMed ID: 30568729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation.
    He X; Chen K; Li Y; Wang Z; Zhang H; Qian J; Ouyang P
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1615-22. PubMed ID: 25899726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products.
    Lee H; Jung Sohn Y; Jeon S; Yang H; Son J; Jin Kim Y; Jae Park S
    Bioresour Technol; 2023 May; 376():128879. PubMed ID: 36921642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Bio-Ethanol by Integrating Microwave-Assisted Dilute Sulfuric Acid Pretreated Sugarcane Bagasse Slurry with Molasses.
    Yu N; Tan L; Sun ZY; Tang YQ; Kida K
    Appl Biochem Biotechnol; 2018 May; 185(1):191-206. PubMed ID: 29101734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.
    Papadaki A; Papapostolou H; Alexandri M; Kopsahelis N; Papanikolaou S; de Castro AM; Freire DMG; Koutinas AA
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35960-35970. PubMed ID: 29654455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses.
    Hatano K; Kikuchi S; Nakamura Y; Sakamoto H; Takigami M; Kojima Y
    Bioresour Technol; 2009 Oct; 100(20):4697-703. PubMed ID: 19467586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework.
    Deeba F; Kiran Kumar K; Ali Wani S; Kumar Singh A; Sharma J; Gaur NA
    Bioresour Technol; 2022 May; 351():127067. PubMed ID: 35351564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types.
    Nakata H; Tamura M; Shintani T; Gomi K
    J Biosci Bioeng; 2014 Jun; 117(6):715-9. PubMed ID: 24333188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading.
    Ye G; Zeng D; Zhang S; Fan M; Zhang H; Xie J
    Bioresour Technol; 2018 Jun; 257():23-29. PubMed ID: 29482162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economical valorization of sugarcane bagasse for efficiently producing optically pure D-(-)-lactate approaching the theoretical maximum yield in low-cost salt medium by metabolically engineered Klebsiella oxytoca.
    Gosalawit C; Kory S; Phosriran C; Jantama K
    Bioresour Technol; 2024 Sep; 407():131145. PubMed ID: 39043279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced co-generation of cellulosic ethanol and methane with the starch/sugar-rich waste mixtures and Tween 80 in fed-batch mode.
    Fan M; Li J; Bi G; Ye G; Zhang H; Xie J
    Biotechnol Biofuels; 2019; 12():227. PubMed ID: 31572494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.